Abstract

A short pulse of light incident on a waveguiding region with a periodic mixture of dielectric materials is shown to experience dramatic changes in its spatial and temporal composition. The reflected and transmitted pulse components experience lateral spread and temporal decompression, which depend on the pulse width, pulse duration, and the structural parameters of the resonant grating.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, �??Guided-mode resonances in planar dielectric-layer diffraction gratings,�?? J. Opt. Soc. Am. A 7, 1470�??1474 (1990).
    [CrossRef]
  2. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  3. S. S. Wang and R. Magnusson, �??Theory and applications of guided-mode resonance filters,�?? Appl. Opt. 32, 2606�??2613 (1993).
    [CrossRef] [PubMed]
  4. R. Magnusson and S. S. Wang, �??Optical waveguide-grating filters,�?? Proc. SPIE 2108, 380�??391 (1993).
    [CrossRef]
  5. J. Saarinen, E. Noponen, and J. Turunen, �??Guided-mode resonance filters of finite aperture,�?? Opt. Eng. 34, 2560�??2566 (1995).
    [CrossRef]
  6. F. Schreier, M. Schmitz, and O. Bryngdahl, �??Pulse delay at diffractive structures under resonance conditions,�?? Opt. Lett. 23, 1337�??1339 (1998).
    [CrossRef]
  7. F. Schreier and O. Bryngdahl, �??Confined wave packets in the domain of Rayleigh-Wood anomalies,�?? J. Opt. Soc. Am. A 17, 68�??73 (2000).
    [CrossRef]
  8. F. Goos and H. Hanchen, �??Ein neuer und fundamentaler versuch zur totalreflexion,�?? Ann. Physik 6, 333�??346 (1947).
    [CrossRef]
  9. J. Turunen, �??Diffraction theory of microrelief gratings,�?? Chapter 2 in Micro-Optics: Elements Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).
  10. C. J. R. Sheppard, �??Bessel pulse beams and focus wave modes,�?? J. Opt. Soc. Am. A 18, 2594�??2600 (2001).
    [CrossRef]

Ann. Physik (1)

F. Goos and H. Hanchen, �??Ein neuer und fundamentaler versuch zur totalreflexion,�?? Ann. Physik 6, 333�??346 (1947).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

J. Saarinen, E. Noponen, and J. Turunen, �??Guided-mode resonance filters of finite aperture,�?? Opt. Eng. 34, 2560�??2566 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

R. Magnusson and S. S. Wang, �??Optical waveguide-grating filters,�?? Proc. SPIE 2108, 380�??391 (1993).
[CrossRef]

Other (2)

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

J. Turunen, �??Diffraction theory of microrelief gratings,�?? Chapter 2 in Micro-Optics: Elements Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Geometry of a guided-mode resonance filter considered in the present work. n 1 = 1.5, n 2 = 1.6, n I = n III = 1.5, d = 0.4213 μm and h = 0.1176 μm.

Fig. 2.
Fig. 2.

Spatially and temporally Gaussian pulse with W 0 = 600 μm and T 0 = 2 ps encounters a resonance filter at z = 0. The horizontal and vertical axes are the z and x-axis, respectively. The units are in millimeters. The time interval between the figures is 1.5 ps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E y ( x , z = 0 , t ) = exp ( t 2 T 0 2 x 2 w 0 2 ) exp ( i ω 0 t )
E y ( x , z = 0 , ω ) = T 0 2 π exp [ ( ω ω 0 ) 2 ( 2 / T 0 ) 2 ] exp ( x 2 ω 0 2 ) ,
E y ( α , z = 0 , ω ) = T 0 ω 0 4 π exp [ ( ω ω 0 ) 2 ( 2 / T 0 ) 2 ] exp [ α 2 ( 2 / ω 0 ) 2 ] ,

Metrics