Abstract

Powerful visible luminescence in a Gadolinium Gallium Garnet (GGG) crystal, co-activated with Yb3+(~15 at.%) and Ho3+(~0.1 at.%) ions, is investigated under CW laser diode pumping (λ = 938 and 976 nm). The main visible emission band is observed in the green with its peak at λ ~540 nm) and measured to be about 10% with respect to Yb3+IR luminescence (λ ~1000 nm). Red (λ ~650 nm) and near-IR (λ ~755 nm) emission bands are also observed but are weaker (about 3–5%). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+ -Ho3+ stepwise up-conversion is the mechanism explaining the phenomenon. Ho3+ ions embedded in the crystal in small concentration are shown to form an effective reservoir for energy transferred from the excited Yb3+ subsystem and to be an efficient source of the visible emission.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.
  2. E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.
  3. L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
    [Crossref]
  4. Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
    [Crossref]
  5. I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).
  6. M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.
  7. M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
    [Crossref]
  8. S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.
  9. R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).
  10. M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
    [Crossref]
  11. E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
    [Crossref]
  12. A. Kaminskii, Crystalline Lasers: Physical Properties and Operation Schemes (CRC, Boca-Raton, FL, 1996).
  13. M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
    [Crossref]
  14. W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
    [Crossref]
  15. E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
    [Crossref]
  16. M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
    [Crossref]
  17. R.A. Hewes and J.F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev.,  182, 427–436 (1969).
    [Crossref]
  18. L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
    [Crossref]
  19. A. Diening and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet,“ J. of Appl. Phys.,  87, 4063–4068 (2000).
    [Crossref]
  20. L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
    [Crossref]
  21. W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
    [Crossref]
  22. E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
    [Crossref]

2002 (1)

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

2001 (5)

E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
[Crossref]

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
[Crossref]

2000 (7)

M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
[Crossref]

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
[Crossref]

A. Diening and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet,“ J. of Appl. Phys.,  87, 4063–4068 (2000).
[Crossref]

1998 (1)

Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
[Crossref]

1996 (1)

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

1995 (1)

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

1971 (2)

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

1969 (1)

R.A. Hewes and J.F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev.,  182, 427–436 (1969).
[Crossref]

1967 (1)

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
[Crossref]

Avizonis, P.V.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Bahler, J.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Barashov, LV.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Bausa, L.E.

E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
[Crossref]

Beach, RJ.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Belovolov, A. M.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Belovolov, M.I.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Boulon, G.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Brenier, A.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Brun, A.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Chenais, S.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Contag, K.

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

Deren, P.J.

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

Dianov, E.M.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Diening, A.

A. Diening and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet,“ J. of Appl. Phys.,  87, 4063–4068 (2000).
[Crossref]

Dominik-Dzik, G.

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

Druon, F.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Emanuel, M.A.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Espeso, O.

E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
[Crossref]

Esterowitz, L.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
[Crossref]

Fider, D.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Fukuda, S.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Gamelin, D.R.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Georges, P.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

Giesen, A.

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

Golab, S.

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

Gudel, H.U.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Guggenheim, H.J.

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

Harris, D.G.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Hehlen, M.P.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Henke, M.

M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
[Crossref]

Hewes, R.A.

R.A. Hewes and J.F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev.,  182, 427–436 (1969).
[Crossref]

Honea, E.C.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Huber, G.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Ivanov, M.A.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Johnson, L.F.

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

Kaminskii, A.

A. Kaminskii, Crystalline Lasers: Physical Properties and Operation Schemes (CRC, Boca-Raton, FL, 1996).

Katoh, Y.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Kuck, S.

E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
[Crossref]

E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
[Crossref]

A. Diening and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet,“ J. of Appl. Phys.,  87, 4063–4068 (2000).
[Crossref]

M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
[Crossref]

Larionov, M.

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

Lavin, V.

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

Loutts, G.B.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Lucas, B.D.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Luthi, S.R.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Luthy, W.

Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
[Crossref]

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Martin, I.R.

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

Mitchell, S.C.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Mix, E.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Monroe, R.S.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Montoya, E.

E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
[Crossref]

Morozov, N.P.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Noginov, M.A.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Noonan, J.

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
[Crossref]

Osiak, E.

E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
[Crossref]

E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
[Crossref]

Payne, S.A.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Persson, J.

M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
[Crossref]

Peters, V.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Pollnau, M.

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Prokhorov, A.M.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Rodriguez, V.D.

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

Rodriguez-Medoza, U.R.

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

Rotacher, Th.

Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
[Crossref]

Rusanov, S.Ya.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Ryba-Romanowski, W.

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

Ryouh, T.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Sarver, J.F.

R.A. Hewes and J.F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev.,  182, 427–436 (1969).
[Crossref]

Shcherbakov, I.A.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Shimokozono, M.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Skidmore, J.A.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Sokolska, I.

E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
[Crossref]

E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
[Crossref]

Solarz, P.

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

Steward, C.S.

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

Stewen, C.

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

Sugimoto, N.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Sutton, S.B.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Tanno, M.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Tate, A.

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

Timoschechkin, K.M.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Timoschechkin, M.I.

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Umyskov, A.F.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Walti, R.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Weber, H.P.

Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
[Crossref]

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Yakovlev, A.A.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Zagumennyi, A.I.

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

, (1)

R. Walti, W. Luthy, H.P. Weber, S.Ya. Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, “Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 μm or 540 nm lasing,” J. Quant. Spectrosc. Radiat. Transfer,  54, 671–681 (1995).

Advanced Solid-State Lasers (2)

C. Stewen, M. Larionov, A. Giesen, and K. Contag, “Yb:YAG thin disk laser with 1 kW output power,” Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 35–41.

E.C. Honea, RJ. Beach, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.B. Sutton, S.A. Payne, P.V. Avizonis, R.S. Monroe, and D.G. Harris, “Dual-rod Yb:YAG laser for high-power and high-brightness applications,” Advanced Solid-State Lasers,H. Injeyan, U. Keller, and C. Marshall, eds.,  Vol.34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.2000), pp. 42–47.

Appl. Phys. Lett. (5)

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, “Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 μm wavelength,” Appl. Phys. Lett.,  68, 2177–2179 (1996).
[Crossref]

L. Esterowitz, J. Noonan, and J. Bahler, “Enhancement in a Ho3+ - Yb3+ quantum counter by energy transfer,” Appl. Phys. Lett.,  10, 126–127 (1967).
[Crossref]

L.F. Johnson and H.J. Guggenheim, “Infrared-pumped visible laser,” Appl. Phys. Lett.,  19, 44–47 (1971).
[Crossref]

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, “Conversion of infrared into red emission in YVO4:Yb,Ho,” Appl. Phys. Lett.,  79, 3026–3028 (2001).
[Crossref]

Conference on Lasers and Electro-Optics (1)

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, “Diode-pumped operation of Yb:GGG laser”, Conference on Lasers and Electro-Optics2001, Technical Digest, pp.170–171.

J. of Alloys & Compounds (2)

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, “Upconversion dynamics in Yb3+- Ho3+-doped fluoroindate glasses,” J. of Alloys & Compounds,  275–277, 345–348 (2001).

E. Osiak, I. Sokolska, and S. Kuck, “Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,” J. of Alloys & Compounds,  323–324, 283–287 (2001).
[Crossref]

J. of Appl. Phys. (2)

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, “Conversion of red light into green light in LiTa3:Ho,” J. of Appl. Phys.,  88, 6078–6080 (2000).
[Crossref]

A. Diening and S. Kuck, “Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet,“ J. of Appl. Phys.,  87, 4063–4068 (2000).
[Crossref]

J. of Luminescence (4)

E. Osiak, I. Sokolska, and S. Kuck, “Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,” J. of Luminescence,  94–95, 289–292 (2001).
[Crossref]

E. Montoya, O. Espeso, and L.E. Bausa, “Cooperative luminescence in Yb3+:LiNbO3,” J. of Luminescence,  87–89, 1036–1038(2000).
[Crossref]

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, “Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,” J. of Luminescence,  96, 129–140(2002).
[Crossref]

M. Henke, J. Persson, and S. Kuck, “Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,” J. of Luminescence,  87–89, 1049–1051 (2000).
[Crossref]

Optics Commun. (1)

Th. Rotacher, W. Luthy, and H.P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG”, Optics Commun.,  155, 68–72 (1998).
[Crossref]

Phys. Rev. (1)

R.A. Hewes and J.F. Sarver, “Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,” Phys. Rev.,  182, 427–436 (1969).
[Crossref]

Phys. Rev. B (1)

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B,  61, 3337–3346 (2000).
[Crossref]

Other (2)

A. Kaminskii, Crystalline Lasers: Physical Properties and Operation Schemes (CRC, Boca-Raton, FL, 1996).

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, LV. Barashov, A. M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, “Room temperature CW Yb:GGG laser operation at 1,038-μm,” Conference on Lasers and Electro-Optics Europe1996, Technical Digest, p.43.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Absorption spectra of Yb,Ho:GGG at room temperature. (a) overall view; (b,c) – insets for UV and visible / near-IR spectral ranges, respectively.

Fig. 2.
Fig. 2.

Main luminescence band (Yb3+) of Yb,Ho:GGG (T = 300 K). Pump -17W(λ ≈ 938 nm.

Fig. 3.
Fig. 3.

Luminescence spectra of Yb,Ho:GGG in visible (T = 300 K, Pump at λ ≈ 938 nm). Curves 1–3 correspond to different levels of pump -4(1), 12.5 (2), and 17 (3) W.

Fig. 4.
Fig. 4.

Dependencies of up-converted green and near-IR emission intensity in Yb,Ho:GGG on pump (λ ≈ 938 nm) power. Inset – the dependencies for the most intense spectral peaks in double-logarithm scale.

Fig. 5.
Fig. 5.

Energy level diagram explaining visible emission in Yb,Ho:GGG at stepwise up-conversion in Yb3+-Ho3+ mixture system.

Fig. 6.
Fig. 6.

Emission spectra of Ho3+:BaY2F8 crystal at room temperature excited at λ = 888nm [11].

Fig. 7.
Fig. 7.

Kinetics of green luminescence at λ = 538.3 nm (Ho3+) under short pump pulse (50μs) excitation in Yb,Ho:GGG crystal . 1 – Excitation pulse; 2 – Green luminescence signal (triangles – experimental data; solid line – their approximation by bi-exponential function).

Metrics