Abstract

Powerful visible luminescence in a Gadolinium Gallium Garnet (GGG) crystal, co-activated with Yb3+(~15 at.%) and Ho3+(~0.1 at.%) ions, is investigated under CW laser diode pumping (λ = 938 and 976 nm). The main visible emission band is observed in the green with its peak at λ ~540 nm) and measured to be about 10% with respect to Yb3+IR luminescence (λ ~1000 nm). Red (λ ~650 nm) and near-IR (λ ~755 nm) emission bands are also observed but are weaker (about 3–5%). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+ -Ho3+ stepwise up-conversion is the mechanism explaining the phenomenon. Ho3+ ions embedded in the crystal in small concentration are shown to form an effective reservoir for energy transferred from the excited Yb3+ subsystem and to be an efficient source of the visible emission.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.Stewen, M.Larionov, A.Giesen, and K.Contag, �??Yb:YAG thin disk laser with 1 kW output power,�?? Advanced Solid-State Lasers, H.Injeyan, U.Keller, and C.Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2000), pp. 35-41.
  2. E.C.Honea, R.J.Beach, S.C.Mitchell, J.A.Skidmore, M.A.Emanuel, S.B.Sutton, S.A.Payne, P.V.Avizonis, R.S.Monroe, and D.G.Harris, �??Dual-rod Yb:YAG laser for high-power and high-brightness applications,�?? Advanced Solid-State Lasers, H.Injeyan, U.Keller, and C.Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2000), pp. 42-47.
  3. L.F.Johnson and H.J.Guggenheim, �??Infrared-pumped visible laser,�?? Appl. Phys. Lett. 19, 44-47 (1971).
    [CrossRef]
  4. Th. Rotacher, W. Luthy, and H.P. Weber, �??Diode pumping and laser properties of Yb:Ho:YAG,�?? Opt. Commun. 155, 68-72 (1998).
    [CrossRef]
  5. I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, �??Upconversion dynamics in Yb3+- Ho3+- doped fluoroindate glasses,�?? J. of Alloys Compounds 275-277, 345-348 (2001).
  6. M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, L.V. Barashov, A.M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, �??Room temperature CW Yb:GGG laser operation at 1,038-µm,�?? Conference on Lasers and Electro-Optics Europe 1996, Technical Digest, p. 43.
  7. M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, �??Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 µm wavelength,�?? Appl. Phys. Lett. 68, 2177-2179 (1996).
    [CrossRef]
  8. S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, �??Diode-pumped operation of Yb:GGG laser�??, Conference on Lasers and Electro-Optics 2001, Technical Digest, pp. 170-171.
  9. R. Walti, W. Luthy, H.P. Weber, S. a.Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, �??Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 µm or 540 nm lasing,�?? J. Quant. Spectrosc. Radiat. Transfer 54, 671-681 (1995).
  10. M. Henke, J. Persson, and S. Kuck, �??Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,�?? J. Luminescence 87-89, 1049-1051 (2000).
    [CrossRef]
  11. E. Osiak, I. Sokolska, and S. Kuck, �??Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,�?? J. Alloys Compounds 323-324, 283-287 (2001).
    [CrossRef]
  12. A. Kaminskii, Crystalline Lasers: Physical Properties and Operation Schemes (CRC, Boca-Raton, FL, 1996).
  13. M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, �??Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,�?? Phys. Rev. B 61, 3337-3346 (2000).
    [CrossRef]
  14. W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, �??Conversion of red light into green light in LiTa3:Ho,�?? J. of Appl. Phys. 88, 6078-6080 (2000).
    [CrossRef]
  15. E. Montoya, O. Espeso, and L.E. Bausa, �??Cooperative luminescence in Yb3+:LiNbO3,�?? J. Luminescence 87-89, 1036-1038 (2000).
    [CrossRef]
  16. M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, �??Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,�?? J. Luminescence 96, 129-140 (2002).
    [CrossRef]
  17. R.A. Hewes and J.F. Sarver, �??Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,�?? Phys. Rev. 182, 427-436 (1969).
    [CrossRef]
  18. L. Esterowitz, J. Noonan, and J. Bahler, �??Enhancement in a Ho3+- Yb3+ quantum counter by energy transfer,�?? Appl. Phys. Lett. 10, 126-127 (1967).
    [CrossRef]
  19. A. Diening and S. Kuck, �??Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet," J. Appl. Phys. 87, 4063-4068 (2000).
    [CrossRef]
  20. L.F. Johnson and H.J. Guggenheim, �??Infrared-pumped visible laser,�?? Appl. Phys. Lett. 19, 44-47 (1971).
    [CrossRef]
  21. W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, �??Conversion of infrared into red emission in YVO4:Yb,Ho,�?? Appl. Phys. Lett. 79, 3026-3028 (2001).
    [CrossRef]
  22. E. Osiak, I. Sokolska, and S. Kuck, �??Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,�?? J. Luminescence 94-95, 289-292 (2001).
    [CrossRef]

Advanced Solid-State Lasers (2)

C.Stewen, M.Larionov, A.Giesen, and K.Contag, �??Yb:YAG thin disk laser with 1 kW output power,�?? Advanced Solid-State Lasers, H.Injeyan, U.Keller, and C.Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2000), pp. 35-41.

E.C.Honea, R.J.Beach, S.C.Mitchell, J.A.Skidmore, M.A.Emanuel, S.B.Sutton, S.A.Payne, P.V.Avizonis, R.S.Monroe, and D.G.Harris, �??Dual-rod Yb:YAG laser for high-power and high-brightness applications,�?? Advanced Solid-State Lasers, H.Injeyan, U.Keller, and C.Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2000), pp. 42-47.

Appl. Phys. Lett. (5)

L.F.Johnson and H.J.Guggenheim, �??Infrared-pumped visible laser,�?? Appl. Phys. Lett. 19, 44-47 (1971).
[CrossRef]

M. Shimokozono, N. Sugimoto, A. Tate, Y. Katoh, M. Tanno, S. Fukuda, and T. Ryouh, �??Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 µm wavelength,�?? Appl. Phys. Lett. 68, 2177-2179 (1996).
[CrossRef]

L. Esterowitz, J. Noonan, and J. Bahler, �??Enhancement in a Ho3+- Yb3+ quantum counter by energy transfer,�?? Appl. Phys. Lett. 10, 126-127 (1967).
[CrossRef]

L.F. Johnson and H.J. Guggenheim, �??Infrared-pumped visible laser,�?? Appl. Phys. Lett. 19, 44-47 (1971).
[CrossRef]

W. Ryba-Romanowski, S. Golab, G. Dominik-Dzik, and P. Solarz, �??Conversion of infrared into red emission in YVO4:Yb,Ho,�?? Appl. Phys. Lett. 79, 3026-3028 (2001).
[CrossRef]

J. Alloys Compounds (1)

E. Osiak, I. Sokolska, and S. Kuck, �??Upconversion-induced blue, green and red emission in Ho3+:BaY2F8,�?? J. Alloys Compounds 323-324, 283-287 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Diening and S. Kuck, �??Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet," J. Appl. Phys. 87, 4063-4068 (2000).
[CrossRef]

J. Luminescence (4)

E. Osiak, I. Sokolska, and S. Kuck, �??Avalanche-like mechanisms and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3,�?? J. Luminescence 94-95, 289-292 (2001).
[CrossRef]

M. Henke, J. Persson, and S. Kuck, �??Preparation and spectroscopy of Yb2+- doped Y3Al5O12, YAlO3, and LiBaF3,�?? J. Luminescence 87-89, 1049-1051 (2000).
[CrossRef]

E. Montoya, O. Espeso, and L.E. Bausa, �??Cooperative luminescence in Yb3+:LiNbO3,�?? J. Luminescence 87-89, 1036-1038 (2000).
[CrossRef]

M.A. Noginov, G.B. Loutts, C.S. Steward, B.D. Lucas, D. Fider, V. Peters, E. Mix, and G. Huber, �??Spectroscopic study of Yb doped oxide crystals for intrinsic optical bistability,�?? J. Luminescence 96, 129-140 (2002).
[CrossRef]

J. of Alloys Compounds (1)

I.R. Martin, V.D. Rodriguez, V. Lavin, and U.R. Rodriguez-Medoza, �??Upconversion dynamics in Yb3+- Ho3+- doped fluoroindate glasses,�?? J. of Alloys Compounds 275-277, 345-348 (2001).

J. of Appl. Phys. (1)

W. Ryba-Romanowski, P.J. Deren, S. Golab, and G. Dominik-Dzik, �??Conversion of red light into green light in LiTa3:Ho,�?? J. of Appl. Phys. 88, 6078-6080 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. Walti, W. Luthy, H.P. Weber, S. a.Rusanov, A.A. Yakovlev, A.I. Zagumennyi, I.A. Shcherbakov, and A.F. Umyskov, �??Yb3+ / Ho3+ energy exchange mechanisms in Yb,Ho:YAG crystals for 2 µm or 540 nm lasing,�?? J. Quant. Spectrosc. Radiat. Transfer 54, 671-681 (1995).

Opt. Commun. (1)

Th. Rotacher, W. Luthy, and H.P. Weber, �??Diode pumping and laser properties of Yb:Ho:YAG,�?? Opt. Commun. 155, 68-72 (1998).
[CrossRef]

Phys. Rev. (1)

R.A. Hewes and J.F. Sarver, �??Infrared excitation processes for the visible luminescence of Er3+, Ho3+, and Tm3+ in Yb3+-sensitized rare-earth trifluorides,�?? Phys. Rev. 182, 427-436 (1969).
[CrossRef]

Phys. Rev. B (1)

M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, and M.P. Hehlen, �??Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,�?? Phys. Rev. B 61, 3337-3346 (2000).
[CrossRef]

Other (3)

A. Kaminskii, Crystalline Lasers: Physical Properties and Operation Schemes (CRC, Boca-Raton, FL, 1996).

M.I. Belovolov, E.M. Dianov, M.I. Timoschechkin, L.V. Barashov, A.M. Belovolov, M.A. Ivanov, N.P. Morozov, A.M. Prokhorov, and K.M. Timoschechkin, �??Room temperature CW Yb:GGG laser operation at 1,038-µm,�?? Conference on Lasers and Electro-Optics Europe 1996, Technical Digest, p. 43.

S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, and G. Boulon, �??Diode-pumped operation of Yb:GGG laser�??, Conference on Lasers and Electro-Optics 2001, Technical Digest, pp. 170-171.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Absorption spectra of Yb,Ho:GGG at room temperature. (a) overall view; (b,c) – insets for UV and visible / near-IR spectral ranges, respectively.

Fig. 2.
Fig. 2.

Main luminescence band (Yb3+) of Yb,Ho:GGG (T = 300 K). Pump -17W(λ ≈ 938 nm.

Fig. 3.
Fig. 3.

Luminescence spectra of Yb,Ho:GGG in visible (T = 300 K, Pump at λ ≈ 938 nm). Curves 1–3 correspond to different levels of pump -4(1), 12.5 (2), and 17 (3) W.

Fig. 4.
Fig. 4.

Dependencies of up-converted green and near-IR emission intensity in Yb,Ho:GGG on pump (λ ≈ 938 nm) power. Inset – the dependencies for the most intense spectral peaks in double-logarithm scale.

Fig. 5.
Fig. 5.

Energy level diagram explaining visible emission in Yb,Ho:GGG at stepwise up-conversion in Yb3+-Ho3+ mixture system.

Fig. 6.
Fig. 6.

Emission spectra of Ho3+:BaY2F8 crystal at room temperature excited at λ = 888nm [11].

Fig. 7.
Fig. 7.

Kinetics of green luminescence at λ = 538.3 nm (Ho3+) under short pump pulse (50μs) excitation in Yb,Ho:GGG crystal . 1 – Excitation pulse; 2 – Green luminescence signal (triangles – experimental data; solid line – their approximation by bi-exponential function).

Metrics