Abstract

We present a practical route to designing a portable femtosecond blue light source that is rugged, compact and battery-powered. An optical-optical second-harmonic generation (SHG) efficiency of 30% is reported using a diode-pumped, femtosecond Cr:LiSAF laser requiring only ~1.2W of electrical drive. 12mW of blue average power is generated using a 3mm KNbO3 crystal in a simple, single-pass extracavity geometry. The corresponding electrical-blue efficiency of 1% is, to our knowledge, the highest reported efficiency of any femtosecond blue source. Despite conditions of large group velocity mismatch, we show that the temporally-broadened blue pulses remain well within the femtosecond regime, at ~540fs.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Tsuda, W. H. Knox, and S. T. Cundiff, "High efficiency diode pumping of a saturable Bragg reflectormode-locked Cr:LiSAF femtosecond laser," Appl. Phys. Lett. 69, 1538-1540 (1996).
    [CrossRef]
  2. A. M. Weiner, A. M. Kan'an, and D. E. Leaird, "High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal," Opt. Lett. 23, 1441-1443 (1998).
    [CrossRef]
  3. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, andW. Sibbett, "Highly Compact and Efficient Femtosecond Lasers," IEEE J. Quantum Electron. 38, 360-368 (2002).
    [CrossRef]
  4. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, andW. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
    [CrossRef]
  5. J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
    [CrossRef]
  6. U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Selec. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  7. D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, "Broadly tunable femtosecond Cr:LiSAF laser," Opt. Lett. 22, 621-623 (1997).
    [CrossRef] [PubMed]
  8. D. Kopf, G. J. Spuhler, K. J. Weingarten, and U. Keller, "Mode-locked laser cavities with a single prism for dispersion compensation," Appl. Opt. 35, 912-915 (1996).
    [CrossRef] [PubMed]
  9. I. Biaggio, P. Kerkoc, L. S. Wu, P. Gunter, and B. Zysset, "Refractive-Indexes of Orthorhombic KNb03 .2. Phase-Matching Configurations for Nonlinear-Optical Interactions," J. Opt. Soc. Am B 9, 507 (1992).
    [CrossRef]
  10. P. Loza-Alvarez, W. Sibbett, and D. T. Reid, "Autocorrelation of femtosecond pulses from 415-630nm using GaN laser diode," Electron. Lett. 36, 1-2 (2000).
    [CrossRef]
  11. W. H. Glenn, �??Second harmonic generation by picosecond optical pulses,�?? IEEE J. Quantum Electron. QE-5, 284 (1969).
    [CrossRef]
  12. J. Comly and E. Garmire, �??Second harmonic generation from short pulses,�??, Appl. Phys. Lett. 12, 7 (1968).
    [CrossRef]
  13. S. Akhmanov et al, �??Non-stationary phenomena and space-time analogy in nonlinear optics,�?? Sov. Phys. JETP 28, 748 (1969).
  14. G. D. Boyd and D. A. Kleinmann, "Parametric interactions of focused Gaussian light beams," J. Appl. Phys. 39, 3897-3641 (1968).
    [CrossRef]
  15. W. Koechner, Solid-State Laser Engineering, 5ed (Springer, Berlin, 1999).

Appl. Opt.

Appl. Phys. Lett.

S. Tsuda, W. H. Knox, and S. T. Cundiff, "High efficiency diode pumping of a saturable Bragg reflectormode-locked Cr:LiSAF femtosecond laser," Appl. Phys. Lett. 69, 1538-1540 (1996).
[CrossRef]

J. Comly and E. Garmire, �??Second harmonic generation from short pulses,�??, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

Electron. Lett.

P. Loza-Alvarez, W. Sibbett, and D. T. Reid, "Autocorrelation of femtosecond pulses from 415-630nm using GaN laser diode," Electron. Lett. 36, 1-2 (2000).
[CrossRef]

IEEE J. Quantum Electron.

W. H. Glenn, �??Second harmonic generation by picosecond optical pulses,�?? IEEE J. Quantum Electron. QE-5, 284 (1969).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, andW. Sibbett, "Highly Compact and Efficient Femtosecond Lasers," IEEE J. Quantum Electron. 38, 360-368 (2002).
[CrossRef]

IEEE J. Selec. Top. Quantum Electron.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Selec. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinmann, "Parametric interactions of focused Gaussian light beams," J. Appl. Phys. 39, 3897-3641 (1968).
[CrossRef]

J. Opt. Soc. Am B

I. Biaggio, P. Kerkoc, L. S. Wu, P. Gunter, and B. Zysset, "Refractive-Indexes of Orthorhombic KNb03 .2. Phase-Matching Configurations for Nonlinear-Optical Interactions," J. Opt. Soc. Am B 9, 507 (1992).
[CrossRef]

Opt. Commun.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, andW. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Opt. Lett.

Sov. Phys. JETP

S. Akhmanov et al, �??Non-stationary phenomena and space-time analogy in nonlinear optics,�?? Sov. Phys. JETP 28, 748 (1969).

Other

W. Koechner, Solid-State Laser Engineering, 5ed (Springer, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the single-pass, frequency-doubled modelocked Cr:LiSAF laser and photograph of the extracavity, single-pass SHG set-up. (PC: polarisation cube; HWP: half-wave plate; HR: high reflector; 1.5%: output coupler; TEC: thermoelectric cooler.)

Fig. 2.
Fig. 2.

(a) Focusing dependence, and (b) the slope efficiency of the SHG process for the 3mm KNbO3 crystal.

Fig. 3.
Fig. 3.

Measured intensity autocorrelations (above) and spectra (below) of the fundamental and second harmonic (blue) pulses, using the 3mm KNbO3 crystal.

Fig. 4.
Fig. 4.

SHG efficiency vs. L/b focusing ratio for the 3mm crystal. The dashed black line illustrates the Boyd-Kleinmann optimal focusing condition (L/b ~ 2.84), and the solid red line shows our experimental peak at L/b ~10.

Fig. 5.
Fig. 5.

Change in blue spectral width with focusing lens (left), and this effect for both crystal lengths (right)

Figure 6.
Figure 6.

Measured wavelength and temperature FWHM acceptance bandwidths of the KNBO3 crystal

Tables (1)

Tables Icon

Table 1. Summary of the performance for the two KNbO3 crystal lengths

Metrics