Abstract

The volume depolarization ratio of the molecular backscatter signal detected with polarization lidar varies by a factor of nearly 4 depending on whether the rotational Raman bands are included in the detected signals of the individual system or not. If the rotational Raman spectrum is included partially in the signals, this calibration factor depends on the temperature of the atmosphere. This dependency is studied for different spectral widths of the receiving channels. In addition, the sensitivity to differences between the laser wavelength and the center wavelength of the receiver are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. M. Scotland, K. Sassen, R. J. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteorol. 10, 1011-1017 (1971).
    [CrossRef]
  2. S. R. Pal and A. I. Carswell, "Polarization properties of lidar backscattering from clouds," Appl. Opt. 12, 1530-1535 (1973).
    [CrossRef] [PubMed]
  3. K. Sassen, �??The polarization lidar technique for cloud research: a review and current assessment,�?? Bull. Am. Meteorol. Soc. 72, 1848�??1866 (1991).
    [CrossRef]
  4. C. M. R. Platt, J. C. Scott, and A. D. Dilley, "Remote sensing of high clouds. Part IV: Optical properties of midlatitude and tropical cirrus," J. Atmos. Sci. 44, 729-747 (1987).
    [CrossRef]
  5. K. Sassen, M. K. Griffin, and G. C. Dodd, "Optical scattering and microphysical properties of subvisual cirrus clouds and climatic implications," J. Appl. Meteorol. 28, 91-91 (1989).
    [CrossRef]
  6. K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
    [CrossRef]
  7. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, "Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds," Geophys. Res. Lett. 17, 385�??388 (1990).
    [CrossRef]
  8. L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Schaffner, and M. C. Pitts, "Dualpolarization air-borne lidar observations of polar stratospheric cloud evolution," Geophys. Res. Lett. 17, 389�??392 (1990).
    [CrossRef]
  9. J. Reichardt, A. Tsias, and A. Behrendt, "Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations," Geophys. Res. Lett. 27, 201�??204 (2000).
    [CrossRef]
  10. S. R. Pal and A. I. Carswell, "Multiple scattering in atmospheric clouds: Lidar observations," Appl. Opt. 15, 1990-1995 (1976).
    [CrossRef] [PubMed]
  11. K. Sassen and R. L. Petrilla, "Lidar depolarization from multiple scattering in marine stratus clouds," Appl. Opt. 25, 1450-1459 (1986).
    [CrossRef] [PubMed]
  12. U. Wandinger, A. Ansmann, and C. Weitkamp, "Atmospheric Raman depolarization measurements," Appl. Opt. 33, 5671-5673 (1994).
    [CrossRef] [PubMed]
  13. J. Biele, G. Beyerle, G. Baumgarten, "Polarization lidar: Corrections of instrumental effects," Opt. Express 7, 427-435 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-427">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-427</a>.
    [CrossRef] [PubMed]
  14. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, "Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles," Appl. Opt. 40, 6587-6595 (2001).
    [CrossRef]
  15. G. Placzek, "Rayleigh-Streuung und Raman Effekt," In: Handbuch der Radiologie, Vol. 6, Part 2, E. Marx, ed. (Akademischer Verlag, Leipzig, 1934).
  16. R. J. Butcher, D. V. Willetts, and W. J. Jones, "On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules - the pure rotational Raman spectra of oxygen and nitrogen," Proc. Roy. Soc. Lond. A. 324, 231-245 (1971); replace in formula (8), p. 238, 2 by 3 as exponent.
    [CrossRef]
  17. M. Penney, R.L. St. Peters, and M. Lapp, "Absolute rotational Raman cross sections for N2, O2, and CO2," J. Opt. Soc. Am. 64, 712-716 (1974).
    [CrossRef]
  18. A. Buldakov, I. I. Matrosov, and T. N. Popova, "Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules," Opt. Spectrosc. (USSR) 46, 488-489 (1979).
  19. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and N.G. Golubeva, "Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen," Opt. Spectrosc. (USSR) 48, 411-412 (1980).
  20. A. T. Young, "Revised depolarization corrections for atmospheric extinction," Appl. Opt. 19, 3427-3428 (1980).
    [CrossRef] [PubMed]
  21. G. W. Kattawar, A. T. Young, T. J. Humphreys, " Inelastic scattering in planetary atmospheres. I The Ring effect without aerosols," Astrophysical J. 243, 1049-1057 (1981).
    [CrossRef]
  22. C.-Y. She, "Spectral structure of laser light revisited: Bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001).
    [CrossRef]
  23. A. T. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981).
    [CrossRef] [PubMed]
  24. D. L. Renschler, J.L. Hunt, T. K. McCubbin, and S. R. Pole, "Triplet structure of the rotational Raman spectrum of oxygen," J. Mol. Spectrosc. 31, 173-176 (1969).
    [CrossRef]
  25. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, "Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geo. Rem. Sens. 31, 90-101 (1993).
    [CrossRef]
  26. F. Cairo, G. D. Donfrancesco, A. Adriani, L. Pulvirenti, F. Fierli, "Comparison of various depolarization parameters measured by lidar," Appl. Opt. 38, 4425-4432 (1999).
    [CrossRef]
  27. D. A. Long, Raman Spectroscopy, (McGraw-Hill, 1977).
  28. A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000).
    [CrossRef]
  29. J. Marling, "1.05-1.44 um tunability and performance of the cw Nd3+:YAG laser," IEEE J. Quantum Electron QE-14, 56-62 (1978).
    [CrossRef]

Appl. Opt.

S. R. Pal and A. I. Carswell, "Polarization properties of lidar backscattering from clouds," Appl. Opt. 12, 1530-1535 (1973).
[CrossRef] [PubMed]

S. R. Pal and A. I. Carswell, "Multiple scattering in atmospheric clouds: Lidar observations," Appl. Opt. 15, 1990-1995 (1976).
[CrossRef] [PubMed]

K. Sassen and R. L. Petrilla, "Lidar depolarization from multiple scattering in marine stratus clouds," Appl. Opt. 25, 1450-1459 (1986).
[CrossRef] [PubMed]

U. Wandinger, A. Ansmann, and C. Weitkamp, "Atmospheric Raman depolarization measurements," Appl. Opt. 33, 5671-5673 (1994).
[CrossRef] [PubMed]

H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, "Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles," Appl. Opt. 40, 6587-6595 (2001).
[CrossRef]

A. T. Young, "Revised depolarization corrections for atmospheric extinction," Appl. Opt. 19, 3427-3428 (1980).
[CrossRef] [PubMed]

C.-Y. She, "Spectral structure of laser light revisited: Bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001).
[CrossRef]

A. T. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981).
[CrossRef] [PubMed]

F. Cairo, G. D. Donfrancesco, A. Adriani, L. Pulvirenti, F. Fierli, "Comparison of various depolarization parameters measured by lidar," Appl. Opt. 38, 4425-4432 (1999).
[CrossRef]

A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000).
[CrossRef]

Astrophysical J.

G. W. Kattawar, A. T. Young, T. J. Humphreys, " Inelastic scattering in planetary atmospheres. I The Ring effect without aerosols," Astrophysical J. 243, 1049-1057 (1981).
[CrossRef]

Bull. Am. Meteorol. Soc.

K. Sassen, �??The polarization lidar technique for cloud research: a review and current assessment,�?? Bull. Am. Meteorol. Soc. 72, 1848�??1866 (1991).
[CrossRef]

Geophys. Res. Lett.

E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, "Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds," Geophys. Res. Lett. 17, 385�??388 (1990).
[CrossRef]

L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Schaffner, and M. C. Pitts, "Dualpolarization air-borne lidar observations of polar stratospheric cloud evolution," Geophys. Res. Lett. 17, 389�??392 (1990).
[CrossRef]

J. Reichardt, A. Tsias, and A. Behrendt, "Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations," Geophys. Res. Lett. 27, 201�??204 (2000).
[CrossRef]

IEEE J. Quantum Electron.

J. Marling, "1.05-1.44 um tunability and performance of the cw Nd3+:YAG laser," IEEE J. Quantum Electron QE-14, 56-62 (1978).
[CrossRef]

IEEE Trans. Geo. Rem. Sens.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, "Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geo. Rem. Sens. 31, 90-101 (1993).
[CrossRef]

J. Appl. Meteorol.

R. M. Scotland, K. Sassen, R. J. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

K. Sassen, M. K. Griffin, and G. C. Dodd, "Optical scattering and microphysical properties of subvisual cirrus clouds and climatic implications," J. Appl. Meteorol. 28, 91-91 (1989).
[CrossRef]

J. Atmos. Sci.

K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001).
[CrossRef]

C. M. R. Platt, J. C. Scott, and A. D. Dilley, "Remote sensing of high clouds. Part IV: Optical properties of midlatitude and tropical cirrus," J. Atmos. Sci. 44, 729-747 (1987).
[CrossRef]

J. Mol. Spectrosc.

D. L. Renschler, J.L. Hunt, T. K. McCubbin, and S. R. Pole, "Triplet structure of the rotational Raman spectrum of oxygen," J. Mol. Spectrosc. 31, 173-176 (1969).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

Opt. Spectrosc. (USSR)

A. Buldakov, I. I. Matrosov, and T. N. Popova, "Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules," Opt. Spectrosc. (USSR) 46, 488-489 (1979).

I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and N.G. Golubeva, "Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen," Opt. Spectrosc. (USSR) 48, 411-412 (1980).

Proc. Roy. Soc. Lond. A

R. J. Butcher, D. V. Willetts, and W. J. Jones, "On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules - the pure rotational Raman spectra of oxygen and nitrogen," Proc. Roy. Soc. Lond. A. 324, 231-245 (1971); replace in formula (8), p. 238, 2 by 3 as exponent.
[CrossRef]

Other

G. Placzek, "Rayleigh-Streuung und Raman Effekt," In: Handbuch der Radiologie, Vol. 6, Part 2, E. Marx, ed. (Akademischer Verlag, Leipzig, 1934).

D. A. Long, Raman Spectroscopy, (McGraw-Hill, 1977).

Supplementary Material (1)

» Media 1: MOV (304 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(305 kB) Animation of the pure rotational Raman spectrum (PRRS) of air for temperatures between T = 180 K and T = 300 K (in arbitrary relative units), Gaussian-shape filter transmission curve with 1.0 nm full width at half maximum (FWHM) at 532 nm, i.e., 35.3 cm-1, and intensity of the pure rotational Raman lines after passing this filter.

Fig. 2.
Fig. 2.

Transmitted fraction of the pure rotational Raman spectrum of N2 against temperature for a lidar receiver with Gaussian shape of the transmission band and full width at half maximum FWHM centered at the laser wavelength of 532 nm.

Fig. 3.
Fig. 3.

Transmitted fraction of the pure rotational Raman spectrum of N2 and O2 in comparison for FWHM = 1.0 nm and a laser wavelength of 532 nm, i.e., a width of 35.3 cm-1.

Fig. 4.
Fig. 4.

Molecular volume depolarization ratio δ mol against temperature T for different values of the width of the transmission band of the lidar receiver FWHM calculated for Gaussian-shape transmission bands centered at a laser wavelength of 532 nm.

Fig. 5.
Fig. 5.

Same as Fig. 4 but for each FWHM normalized to δ mol(T = 240 K).

Fig. 6.
Fig. 6.

Molecular volume depolarization ratio δ mol against temperature for a receiver bandwidth of 0.5 nm at 532 nm, i.e., 17.7 cm-1, and different shifts Shift of the center wavelength of the receiver bandwidth relative to the laser wavelength.

Fig. 7.
Fig. 7.

same as Fig. 6 but normalized to δ mol(T = 240 K).

Tables (3)

Tables Icon

Table 1. Ground state rotational and centrifugal distortion constants B 0,i and D 0,i (taken from Ref. 16), statistical weight factors gi (J), nuclear spin Ii , square of the anisotropy of the molecular polarizability tensor γi2 (Ref. 15, mean of three measurement methods, all measured at 488 nm, also supported by Ref. 19), and εi = (γi /αi )2 with αi for the trace of the molecular polarizability tensor (derived from Ref. 20).

Tables Icon

Table 2. Fraction of the pure rotational Raman spectrum of N2 and of O2, x O2 (T) and x N2 (T), respectively, transmitted by filters of different full width at half maximum (FWHM) at T = 240 K and resulting molecular depolarization ratio δ mol(T). The filter transmission band is centered at the laser wavelength. Δδ mol is the relative variation of δ mol(T) between atmospheric temperatures T = 200 K and T = 280 K as defined with Eq. 19.

Tables Icon

Table 3. Same as Table 2 but for a filter width of 0.5 nm at 532 nm, i.e., of 17.7 cm-1, and with different shifts of the filter’s central wavelength (Shift) against the laser wavelength. Δδmol* will be the systematic measurement error at T = 240 K if instead of the correct value δ mol(Shift = 0) = 3.76∙10-3 is used.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

( ) π RR , St , i ( J ) = 64 π 4 15 g i ( J ) h c B 0 , i ( ν 0 + Δ ν St , i ( J ) ) 4 γ i 2 ( 2 I i + 1 ) 2 k T ( J + 1 ) ( J + 2 ) ( 2 J + 3 ) exp ( E rot , i ( J ) k T )
( ) π RR , ASt , i ( J ) = 64 π 4 15 g i ( J ) h c B 0 , i ( ν 0 + Δ ν ASt , i ( J ) ) 4 γ i 2 ( 2 I i + 1 ) 2 k T J ( J 1 ) ( 2 J 1 ) exp ( E rot , i ( J ) k T )
E rot , i ( J ) = [ B 0 , i J ( J + 1 ) D 0 , i J 2 ( J + 1 ) 2 ] hc .
Δ ν St , i ( J ) = B 0 , i 2 ( 2 J + 3 ) + D 0 , i [ 3 ( 2 J + 3 ) + ( 2 J + 3 ) 3 ]
Δ ν ASt , i ( J ) = B 0 , i 2 ( 2 J 1 ) D 0 , i [ 3 ( 2 J 1 ) + ( 2 J 1 ) 3 ] .
( ) π Cab , p , i = κ ( α i 2 + 1 45 γ i 2 )
( ) π Cab , s , i = κ 1 60 γ i 2
( ) π RR , p , i = κ 1 15 γ i 2
( ) π RR , s , i = κ 1 20 γ i 2
κ = ν 0 π 2 ν s λ s 4
δ ( z ) = β s ( z ) β p ( z ) = β s mol ( z ) + β s par ( z ) β p mol ( z ) + β p par ( z ) ,
δ ( z ) = k P s ( z ) P p ( z )
δ mol ( z 0 ) = β s mol ( z 0 ) β p mol ( z 0 )
k = δ mol ( z 0 ) P p ( z 0 ) P s ( z 0 ) .
δ par ( z ) = β s par β p par = R s ( z ) 1 R p ( z ) 1 δ mol ( z )
δ Cab , i = 3 ε i 180 + 4 ε i , δ R ay , i = 3 ε i 45 + 4 ε i
δ mol = i c i [ ( ) π Cab , s , i + x i ( ) π RR , s , i ] i c i [ ( ) π Cab , p , i + x i ( ) π RR , p , i ]
δ mol = 3 4 i c i γ i 2 [ 3 x i + 1 ] i c i γ i 2 [ 3 x i + 1 + 45 ε i ] .
Δ δ mol δ mol ( T = 200 K ) δ mol ( T = 280 K ) δ mol ( T = 240 K ) .
Δ δ mol * ( shift ) δ mol ( shift ) δ mol ( shift = 0 ) δ mol ( shift ) .

Metrics