Abstract

Piezo-electronic transducer is used in combination with mechanical scanning devices to improve measurement accuracy in a distributed polarization coupling detection system. For mechanical scanning range of 150 mm with 200-nm resolution, the measurement error of polarization-coupling intensity can be improved from 38% to 2% in combination with a 20-nm resolution piezo-electronic transducer.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Cortes, A. V. Khomenko, A. N. Starodumov, N. Arzate, and L. A. Zenteno "Interferometric fiber-optic temperature sensor with spiral polarization couplers," Opt. Commun. 154, 268-272 (1998)
    [CrossRef]
  2. Y. J. Rao, D. A. Jackson, "Long-distance fiber-optic white light displacement sensing system using a sourcesynthesizing technique," Electron. Lett. 31, 310-312 (1995)
    [CrossRef]
  3. Y. J. Rao, Y. N. Ning, D. A. Jackson, "Synthesized source for white-light sensing systems," Opt. Lett. 18, 462-464 (1993)
    [CrossRef] [PubMed]
  4. S. C. Rashleigh, W. K. Burns, R. .P Moeller, R. Ulrich, "Polarization holding in birefringent single-mode fibers," Opt. Lett. 7, 40-42 (1982)
    [CrossRef] [PubMed]
  5. P. Martin, G. Le Boudec, H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coilsusing white light interferometry," in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel, Eric Udd, eds., Proc. SPIE, 1585, pp. 173-179 (1991)
  6. J. Tpia-Mercado, A. V. Khomenko, A. Garcia-Weidner, "Precision and sensitivity optimization for white-light interferometric fiber-optic sensors," J. Lightwave Technol. 19, 70-74 (2001)
    [CrossRef]
  7. R. E. Schuh, E. S. R. Sikora, N. G. Walker, A. S. Siddiqui, L. M. Gleeson, D. H. O. Bebbington, "Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers," Electron. Lett. 31, 1772-1773 (1995)
    [CrossRef]
  8. D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, "The optimized wavelength combination of two broadband sources for white light interferometry," J. Lightwave Technol. 12, 909-916 (1994)
    [CrossRef]
  9. Yun-Jiang Rao, David A. Jackson, "Recent progress in fiber optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996)
    [CrossRef]

Electron. Lett.

Y. J. Rao, D. A. Jackson, "Long-distance fiber-optic white light displacement sensing system using a sourcesynthesizing technique," Electron. Lett. 31, 310-312 (1995)
[CrossRef]

R. E. Schuh, E. S. R. Sikora, N. G. Walker, A. S. Siddiqui, L. M. Gleeson, D. H. O. Bebbington, "Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers," Electron. Lett. 31, 1772-1773 (1995)
[CrossRef]

J. Lightwave Technol.

D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, "The optimized wavelength combination of two broadband sources for white light interferometry," J. Lightwave Technol. 12, 909-916 (1994)
[CrossRef]

J. Tpia-Mercado, A. V. Khomenko, A. Garcia-Weidner, "Precision and sensitivity optimization for white-light interferometric fiber-optic sensors," J. Lightwave Technol. 19, 70-74 (2001)
[CrossRef]

Meas. Sci. Technol.

Yun-Jiang Rao, David A. Jackson, "Recent progress in fiber optic low-coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996)
[CrossRef]

Opt. Commun.

R. Cortes, A. V. Khomenko, A. N. Starodumov, N. Arzate, and L. A. Zenteno "Interferometric fiber-optic temperature sensor with spiral polarization couplers," Opt. Commun. 154, 268-272 (1998)
[CrossRef]

Opt. Lett.

Proc. SPIE

P. Martin, G. Le Boudec, H. C. Lefevre, "Test apparatus of distributed polarization coupling in fiber gyro coilsusing white light interferometry," in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel, Eric Udd, eds., Proc. SPIE, 1585, pp. 173-179 (1991)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the distributed polarization coupling detection system

Fig. 2
Fig. 2

Relationship between the measurement accuracy and mechanical vibration

Fig. 3
Fig. 3

Relationship between the measurement accuracy and PZT scanning resolution

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L max = OPD max B = 4 L 0 B
R s = L c B = 50 ( mm ) .
I ( l , Δ s ) = I d c + I a c
= I d c ( 1 + I a c I d c ) , Δ n b l Δ s L c
= I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s ) L c ) 2 ] } cos [ k 0 ( Δ n b l Δ s ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s > L c
h ( l ) = ( I ( l , Δ s ) avg I ( l , Δ s ) max ) 2 , Δ n b l Δ s L c
Δ s add = 4 Δ x 0 rand ( 1 )
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add ) L c ) 2 ] } , Δ n b l Δ s + Δ s add L c
cos [ k 0 ( Δ n b l Δ s + Δ s add ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s + Δ s add > L c
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add + Δ s PZT ) L c ) 2 ] } ,
cos [ k 0 ( Δ n b l Δ s + Δ s add + Δ s PZT ) ]
I ( l , Δ s ) = I d c , when Δ n b l Δ s + Δ s add + Δ s PZT > L c

Metrics