Abstract

Piezo-electronic transducer is used in combination with mechanical scanning devices to improve measurement accuracy in a distributed polarization coupling detection system. For mechanical scanning range of 150 mm with 200-nm resolution, the measurement error of polarization-coupling intensity can be improved from 38% to 2% in combination with a 20-nm resolution piezo-electronic transducer.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotation angle optimization of the polarization eigenmodes for detection of weak mode coupling in birefringent waveguides

Wencai Jing, Yimo Zhang, Ge Zhou, Hongxia Zhang, Zhaohui Li, and Xiaoming Man
Opt. Express 10(18) 972-977 (2002)

Influence of vibration disturbance during polarization coupling measurement of polarization-maintaining fiber

Zhenwu Guo, Hongxia Zhang, Xinwei Chen, Dagong Jia, and Tiegen Liu
Appl. Opt. 50(20) 3553-3558 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
    [Crossref]
  2. Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
    [Crossref]
  3. Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
    [Crossref] [PubMed]
  4. S C Rashleigh, W K Burns, R P Moeller, and R Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982)
    [Crossref] [PubMed]
  5. P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)
  6. J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
    [Crossref]
  7. R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
    [Crossref]
  8. D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
    [Crossref]
  9. Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
    [Crossref]

2001 (1)

1998 (1)

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

1996 (1)

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[Crossref]

1995 (2)

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[Crossref]

1994 (1)

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

1993 (1)

1991 (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

1982 (1)

Arzate, N

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Bebbington, D H O

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Burns, W K

Cortes, R

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Garcia-Weidner, A

Gleeson, L M

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Grattan, K T V

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

Jackson, D A

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[Crossref]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[Crossref] [PubMed]

Jackson, David A

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[Crossref]

Khomenko, A V

J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
[Crossref]

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Le Boudec, G

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Lefevre, H C

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Martin, P

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Moeller, R P

Ning, Y N

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[Crossref] [PubMed]

Palmer, A W

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

Rao, Y J

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[Crossref]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[Crossref] [PubMed]

Rao, Yun-Jiang

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[Crossref]

Rashleigh, S C

Schuh, R E

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Siddiqui, A S

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Sikora, E S R

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Starodumov, A N

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Tpia-Mercado, J

Ulrich, R

Walker, N G

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

Wang, D N

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

Weir, K

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

Zenteno, L A

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Electron. Lett. (2)

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[Crossref]

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[Crossref]

J. Lightwave Technol. (2)

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[Crossref]

J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
[Crossref]

Meas. Sci. Technol. (1)

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[Crossref]

Opt. Commun. (1)

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the distributed polarization coupling detection system

Fig. 2
Fig. 2

Relationship between the measurement accuracy and mechanical vibration

Fig. 3
Fig. 3

Relationship between the measurement accuracy and PZT scanning resolution

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L max = OPD max B = 4 L 0 B
R s = L c B = 50 ( mm ) .
I ( l , Δ s ) = I d c + I a c
= I d c ( 1 + I a c I d c ) , Δ n b l Δ s L c
= I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s ) L c ) 2 ] } cos [ k 0 ( Δ n b l Δ s ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s > L c
h ( l ) = ( I ( l , Δ s ) avg I ( l , Δ s ) max ) 2 , Δ n b l Δ s L c
Δ s add = 4 Δ x 0 rand ( 1 )
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add ) L c ) 2 ] } , Δ n b l Δ s + Δ s add L c
cos [ k 0 ( Δ n b l Δ s + Δ s add ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s + Δ s add > L c
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add + Δ s PZT ) L c ) 2 ] } ,
cos [ k 0 ( Δ n b l Δ s + Δ s add + Δ s PZT ) ]
I ( l , Δ s ) = I d c , when Δ n b l Δ s + Δ s add + Δ s PZT > L c

Metrics