Abstract

Piezo-electronic transducer is used in combination with mechanical scanning devices to improve measurement accuracy in a distributed polarization coupling detection system. For mechanical scanning range of 150 mm with 200-nm resolution, the measurement error of polarization-coupling intensity can be improved from 38% to 2% in combination with a 20-nm resolution piezo-electronic transducer.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
    [CrossRef]
  2. Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
    [CrossRef]
  3. Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
    [CrossRef] [PubMed]
  4. S C Rashleigh, W K Burns, R P Moeller, and R Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982)
    [CrossRef] [PubMed]
  5. P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)
  6. J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
    [CrossRef]
  7. R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
    [CrossRef]
  8. D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
    [CrossRef]
  9. Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
    [CrossRef]

2001 (1)

1998 (1)

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

1996 (1)

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[CrossRef]

1995 (2)

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[CrossRef]

1994 (1)

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

1993 (1)

1991 (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

1982 (1)

Arzate, N

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Bebbington, D H O

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Burns, W K

Cortes, R

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Garcia-Weidner, A

Gleeson, L M

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Grattan, K T V

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

Jackson, D A

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[CrossRef]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[CrossRef] [PubMed]

Jackson, David A

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[CrossRef]

Khomenko, A V

J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
[CrossRef]

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Le Boudec, G

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Lefevre, H C

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Martin, P

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Moeller, R P

Ning, Y N

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[CrossRef] [PubMed]

Palmer, A W

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

Rao, Y J

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[CrossRef]

Y J Rao, Y N Ning, and D A Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993)
[CrossRef] [PubMed]

Rao, Yun-Jiang

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[CrossRef]

Rashleigh, S C

Schuh, R E

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Siddiqui, A S

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Sikora, E S R

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Starodumov, A N

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Tpia-Mercado, J

Ulrich, R

Walker, N G

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

Wang, D N

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

Weir, K

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

Zenteno, L A

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Electron. Lett. (2)

Y J Rao and D A Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett. 31, 310–312 (1995)
[CrossRef]

R E Schuh, E S R Sikora, N G Walker, A S Siddiqui, L M Gleeson, and D H O Bebbington, “Theoretical analysis and measurement of effects of fiber twist on polarization mode dispersion of optical fibers,” Electron. Lett. 31, 1772–1773 (1995)
[CrossRef]

J. Lightwave Technol. (2)

D N Wang, Y N Ning, K T V Grattan, A W Palmer, and K Weir, “The optimized wavelength combination of two broadband sources for white light interferometry,” J. Lightwave Technol. 12, 909–916 (1994)
[CrossRef]

J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
[CrossRef]

Meas. Sci. Technol. (1)

Yun-Jiang Rao and David A Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996)
[CrossRef]

Opt. Commun. (1)

R Cortes, A V Khomenko, A N Starodumov, N Arzate, and L A Zenteno “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 154, 268–272 (1998)
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE,  1585, pp. 173–179 (1991)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the distributed polarization coupling detection system

Fig. 2
Fig. 2

Relationship between the measurement accuracy and mechanical vibration

Fig. 3
Fig. 3

Relationship between the measurement accuracy and PZT scanning resolution

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L max = OPD max B = 4 L 0 B
R s = L c B = 50 ( mm ) .
I ( l , Δ s ) = I d c + I a c
= I d c ( 1 + I a c I d c ) , Δ n b l Δ s L c
= I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s ) L c ) 2 ] } cos [ k 0 ( Δ n b l Δ s ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s > L c
h ( l ) = ( I ( l , Δ s ) avg I ( l , Δ s ) max ) 2 , Δ n b l Δ s L c
Δ s add = 4 Δ x 0 rand ( 1 )
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add ) L c ) 2 ] } , Δ n b l Δ s + Δ s add L c
cos [ k 0 ( Δ n b l Δ s + Δ s add ) ]
I ( l , Δ s ) = I d c , Δ n b l Δ s + Δ s add > L c
I ( l , Δ s ) = I d c { 1 + h 1 2 ( l ) exp [ ( 2 ( Δ n b l Δ s + Δ s add + Δ s PZT ) L c ) 2 ] } ,
cos [ k 0 ( Δ n b l Δ s + Δ s add + Δ s PZT ) ]
I ( l , Δ s ) = I d c , when Δ n b l Δ s + Δ s add + Δ s PZT > L c

Metrics