Abstract

The principles of time-integrated holography (TIH) as applied to optical tomography are presented. When a light scattering medium is transilluminated , the unique property of holography to operate on the complex amplitude of the emerging wave can be exploited to introduce a selective relationship between the impinging and the emerging wave-fronts and to image objects obscured by the medium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. G. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, 1971), Chap.13.
  2. H. Kogelnik, K. S. Pennington, ???Holographic imaging through a random medium,??? J. Opt. Soc. Am. 58, 273 (1968).
    [CrossRef]
  3. H. Kogelnik, ???Holographic image projection through inhomogeneous media,??? Bell Syst. Tech. J. 44, 2451 (1965).
  4. E. N.Leith, J. Upatnieks, ???Holographic imagery through diffusing media,??? J. Opt. Soc. Am. 56, 523 (1966).
    [CrossRef]
  5. J. W. Goodman, W. H. Huntley, D. W. Jackson , M. Lehmann, ???Wavefront reconstruction imaging through random media,??? Appl.. Phys. Lett. 8, 311 (1966).
    [CrossRef]
  6. J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, ??? Experiments in long-distance holographic imagery,??? Appl. Opt. 8, 1581 (1969).
    [CrossRef] [PubMed]
  7. K. A. Stetson, ???Holographic fog penetration,??? J. Opt. Soc. Am. 57, 1060 (1967).
    [CrossRef]
  8. R. Jones, N. P. Barry, S. C. W. Hyde, J. C. Dainty, P.M. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, ???Time-gated holographic imaging using photorefractive multiple quantum well devices???, in Coherence domain optical methods in biomedical science and clinical applications, Proc. SPIE Vol. 2981 (1997).
    [CrossRef]
  9. R. G. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press,1971), Chap. 15.
  10. G. Muller (Ed), Medical optical tomography, SPIE Institute for Advanced Optical Technologies, Vol. IS11 (1993).
  11. B. Kippelen, e.a.,??? Infrared photorefractive polymers and their applications for imaging,??? Science 279, 54 (1998).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Appl.. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson , M. Lehmann, ???Wavefront reconstruction imaging through random media,??? Appl.. Phys. Lett. 8, 311 (1966).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, ???Holographic image projection through inhomogeneous media,??? Bell Syst. Tech. J. 44, 2451 (1965).

J. Opt. Soc. Am. (3)

Proc. SPIE (1)

R. Jones, N. P. Barry, S. C. W. Hyde, J. C. Dainty, P.M. French, K. M. Kwolek, D. D. Nolte, M. R. Melloch, ???Time-gated holographic imaging using photorefractive multiple quantum well devices???, in Coherence domain optical methods in biomedical science and clinical applications, Proc. SPIE Vol. 2981 (1997).
[CrossRef]

Science (1)

B. Kippelen, e.a.,??? Infrared photorefractive polymers and their applications for imaging,??? Science 279, 54 (1998).
[CrossRef] [PubMed]

Other (3)

R. G. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press,1971), Chap. 15.

G. Muller (Ed), Medical optical tomography, SPIE Institute for Advanced Optical Technologies, Vol. IS11 (1993).

R. G. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, 1971), Chap.13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic setup.

Fig.2.
Fig.2.

One-dimensional transparency hidden by an expanded polyethylene slice.

Fig. 3.
Fig. 3.

Illustration of the condition x=x’.

Fig.4.
Fig.4.

Two-dimensional transparency.

Fig.5a.
Fig.5a.

TI Hologram of a small fish.

Fig.5b.
Fig.5b.

Same object without TI.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

a ( x ' , y ' ) = a ( x , y ) M ( x ) exp [ i θ ( x , y ; x ' , y ' ) ] dxdy
a ( x ' , y ' , t ) = a ( x , y ) M ( x ) exp [ i θ ( x , y ; x ' , y ' ) ] exp ( ikωtx ) exp ( ikωtx ' ) dxdy
a ( x ' , y ' , t ) R * d t + a ( x ' , y ' , t ) * R d t
a ( x ' , y ' ) = a ( x , y ) M ( x ) exp [ i θ ( x , y ; x ' , y ' ) ] exp [ i k ( x x ' ) ω t ] dxdydt
a ( x ' , y ' ) = a ( x , y ) M ( x ) exp [ i θ ( x , y ; x ' , y ' ) ] exp [ i k ( x x ' ) ω T 2 ]
× sin [ k ( x x ' ) ω T 2 ] k ( x x ' ) ω T 2 dxdy
a ( x ' , y ' ) = M ( x = x ' ) a ( x = x ' , y ) exp [ i θ ( x = x ' , y ; x ' , y ' ) ] dy
exp [ i k ( x x ' ) φ ( t ) ]
φ = φ o cos ω t
T for ( x x’ ) = 0
T J o ( w ) π for ( x x’ ) 0
exp { i k ( x x ' ) φ x ( t ) + ( y y ' ) φ y ( t ) }
a ( x ' ) = M ( ξ ) exp [ i θ ( x = x ' ; ξ ) ] exp [ i θ ( ξ ; x ' ) ] d ξ

Metrics