Abstract

Over the past decade, developments towards near-infrared (NIR) optical tomography involve the recovery of interior optical maps from boundary measurements using the first principles of light propagation models. The refractive-index mismatch parameter in the boundary condition of the light propagation model, namely the diffusion equation, can significantly impact model prediction of measurements and therefore image recovery. In this contribution, the influence of refractive-index mismatch parameter between predictions and referenced measurements of fluorescence-enhanced frequency-domain photon migration (FDPM) are established; its greater influence on emission over excitation predictions are demonstrated, and the methods to accurately determine refractive index mismatch parameter from basic principles are reviewed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. . K.M. Case, P. F. Zweifel , Linear Transport Theory (Addison-Wesley, Massachusetts, 1967).
  2. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  3. A. Ishimaru, "Diffusion of light in turbid media," Appl. Opt. 28, 2210-2215 (1989).
    [CrossRef] [PubMed]
  4. R. C. Haskell, L. O. Scassand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    [CrossRef]
  5. M. S. Patterson, B. Chance, B. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  6. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
    [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 9, 879-888 (1992).
    [CrossRef]
  8. M. Keijzer, W. M. Star, P. R. Storchi, "Optical diffusion in layered media," Appl. Opt. 27, 1820-1824 (1988).
    [CrossRef] [PubMed]
  9. R. Aronson, "Boundary conditions for diffusion of light," J. Opt. Soc. Am. A 12, 2532-2539 (1995).
    [CrossRef]
  10. R. Aronson, "Extrapolation distance for diffusion of light," in Photon Migration and Imaging in Random Media and Tissues, B. Chance., R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297-305 (1993).
  11. M. G. Nichols, E. L. Hull, T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
    [CrossRef] [PubMed]
  12. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis," Appl. Opt. 37, 3586-3593 (1998).
    [CrossRef]
  13. M. A. Bartlett, H. Jiang, "Effect of refractive index on the measurement of optical properties in turbid media," Appl. Opt. 40, 1735-1741 (2001).
    [CrossRef]
  14. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, "Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction," Appl. Opt. 40, 588-600 (2001).
    [CrossRef]
  15. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. Theory," Appl. Opt. 22, 2456-2462 (1983).
    [CrossRef] [PubMed]
  16. W. G. Egan, T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, New York, 1979).
  17. D. J. Durian, "Influence of boundary reflection and refraction on diffusive photon transport," Phys. Rev. E 50, 857-866 (1994).
    [CrossRef]
  18. E. M. Sevick-Muraca and D. Y. Paithankar, "Fluorescence imaging system and measurement," U. S. Patent No. 5,865,754 (2 February 1999).
  19. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters K. K. Cornell, P. W. Snyder and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999).
    [CrossRef]
  20. E. M. Sevick, C. L. Burch, "Origin of phosphorescence signals reemitted from tissues," Opt. Lett. 19, 1928-1930 (1994).
    [CrossRef]
  21. M. S. Patterson, B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  22. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, "Fluorescence life-time based sensing in tissues: A computational study," Biophys. J. 68, 1574-1582 (1995).
    [CrossRef] [PubMed]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  24. R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, "Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999).
    [CrossRef]
  25. D. J. Hawrysz, Bayesian approach to the inverse problem in contrast-enhanced, three-dimensional, biomedical optical imaging using frequency domain photon migration, PhD Thesis, Purdue University, May 2001.
  26. A. Kienle, M. S. Patterson, "Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997).
    [CrossRef]
  27. R. Roy, E. M. Sevick-Muraca, "Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I Theory and Formulation" Opt. Express 4, 353-371 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353</a>.
    [CrossRef] [PubMed]
  28. O. C. Zeinkiewicz, R. L. Taylor, The finite element methods in engineering science (McGraw-Hill, New York, 1989).
  29. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, "Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. of Natl. Acad. Science 2002 (accepted).
    [CrossRef]

Appl. Opt. (11)

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, "Scattering and absorption of turbid material determined from reflection measurements. 1. Theory," Appl. Opt. 22, 2456-2462 (1983).
[CrossRef] [PubMed]

M. Keijzer, W. M. Star, P. R. Storchi, "Optical diffusion in layered media," Appl. Opt. 27, 1820-1824 (1988).
[CrossRef] [PubMed]

A. Ishimaru, "Diffusion of light in turbid media," Appl. Opt. 28, 2210-2215 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, "Measurement of the fluorescent lifetime in scattering media by frequency-domain photon migration," Appl. Opt. 38, 4930-4938 (1999).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnosis," Appl. Opt. 37, 3586-3593 (1998).
[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, "Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry for finite-element image reconstruction," Appl. Opt. 40, 588-600 (2001).
[CrossRef]

M. A. Bartlett, H. Jiang, "Effect of refractive index on the measurement of optical properties in turbid media," Appl. Opt. 40, 1735-1741 (2001).
[CrossRef]

Biophys. J. (1)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, "Fluorescence life-time based sensing in tissues: A computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 9, 879-888 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters K. K. Cornell, P. W. Snyder and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999).
[CrossRef]

Phys. Med. Biol. (1)

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. J. Durian, "Influence of boundary reflection and refraction on diffusive photon transport," Phys. Rev. E 50, 857-866 (1994).
[CrossRef]

Proc. of Natl. Acad. Science (1)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, "Three-dimensional, near-infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. of Natl. Acad. Science 2002 (accepted).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Aronson, "Extrapolation distance for diffusion of light," in Photon Migration and Imaging in Random Media and Tissues, B. Chance., R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1888, 297-305 (1993).

Other (6)

W. G. Egan, T. W. Hilgeman, Optical properties of inhomogeneous materials (Academic, New York, 1979).

. K.M. Case, P. F. Zweifel , Linear Transport Theory (Addison-Wesley, Massachusetts, 1967).

J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).

E. M. Sevick-Muraca and D. Y. Paithankar, "Fluorescence imaging system and measurement," U. S. Patent No. 5,865,754 (2 February 1999).

D. J. Hawrysz, Bayesian approach to the inverse problem in contrast-enhanced, three-dimensional, biomedical optical imaging using frequency domain photon migration, PhD Thesis, Purdue University, May 2001.

O. C. Zeinkiewicz, R. L. Taylor, The finite element methods in engineering science (McGraw-Hill, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1a.
Fig. 1a.

3D phantom set-up in the laboratory

Fig. 1b.
Fig. 1b.

Source-detector grid in the 3D phantom surface. Here, x’s denote the source locations

Fig. 2.
Fig. 2.

(a) AC ratio, (b) Relative Phase Shift at excitation wavelength for source at (0,5,5) cm

Fig. 3.
Fig. 3.

(a) AC ratio, (b) Relative Phase Shift at emission wavelength for source at (0,5,5) cm

Tables (3)

Tables Icon

Table 1. Reff values at various interfaces from Fresnel’s reflections

Tables Icon

Table 2. Optical properties of the background and target in the 3D phantom

Tables Icon

Table 3. Errors in AC ratio and Relative phase shift at excitation and emission wavelengths for all cases.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Φ x , m ( r , ω ) + 2 γ D x , m ( r ) Φ x , m ( r , ω ) n = 0
γ = ( 1 + R eff 1 R eff )
R eff = 1.440 n rel 2 + 0.1710 n rel 1 + 0.668 + 0.0636 n rel
R eff = 1 + R j 1 R Φ
R j = 0 π 2 2 sin Θ cos Θ R Fresnel ( Θ ) d Θ
R Φ = 0 π 2 3 sin Θ cos 2 Θ R Fresnel ( Θ ) d Θ
R ( r , ω ) = A Φ ( r , ω ) + B n Φ ( r , ω )
R ( r , ω ) R ( r ref , ω ) = Φ ( r , ω ) Φ ( r ref , ω )
Φ ( r , ω ) = I a c exp ( θ )
R ( r , ω ) R ( r ref , ω ) = I a c I a c , ref exp ( Δ θ )

Metrics