Abstract

Photodarkening of amorphous As2Se3 thin films was generated by a 633-nm HeNe laser. The refractive index and absorption coefficient of the chalcogenide glass was determined, both before and after exposure, by analyzing the material’s transmission spectrum. In order to accurately determine the optical constants, the thin film’s non-uniform thickness was accounted for. The increase in the refractive index and the coefficient of absorption was investigated and was found to demonstrate saturation with increased exposure time. Index changes as high as 0.05, or 2%, were obtained in As2Se3, a promising glass for all-optical switching.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47, 101–116 (1982).
    [Crossref]
  2. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150–159 (1999).
    [Crossref]
  3. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [Crossref]
  4. M. Asobe, H. Kobayashi, and H. Itoh, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,” Opt. Lett. 18, 1056–1058 (1993).
    [Crossref] [PubMed]
  5. A. V. Kolobov and K. Tanaka, “Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale” in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, San Diego, 2001).
  6. O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
    [Crossref]
  7. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
    [Crossref]
  8. S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
    [Crossref]
  9. J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1973/74).
    [Crossref]
  10. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
    [Crossref]
  11. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
    [Crossref]
  12. M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
    [Crossref]
  13. R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E: Sci. Instrum. 17, 896–903 (1984).
    [Crossref]
  14. J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
    [Crossref]
  15. E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
    [Crossref]
  16. M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
    [Crossref]
  17. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842(1999).
    [Crossref]
  18. C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
    [Crossref] [PubMed]
  19. A. E. Owen, “Semiconducting glasses part II: properties and interpretation,” Contemp. Phys. 11, 257–286 (1970).
    [Crossref]
  20. A. Ganjoo and K. Shimakawa, “Transient and metastable photodarkening in amorphous chalcogenides,” J. Optoelectron. Adv. M. 3, 221–226 (2001).
  21. T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

2002 (2)

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
[Crossref]

2001 (1)

A. Ganjoo and K. Shimakawa, “Transient and metastable photodarkening in amorphous chalcogenides,” J. Optoelectron. Adv. M. 3, 221–226 (2001).

1999 (2)

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150–159 (1999).
[Crossref]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842(1999).
[Crossref]

1998 (1)

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[Crossref]

1997 (2)

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

1995 (2)

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

1994 (2)

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[Crossref]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

1993 (1)

1986 (1)

M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
[Crossref]

1984 (1)

R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E: Sci. Instrum. 17, 896–903 (1984).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

1982 (1)

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47, 101–116 (1982).
[Crossref]

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
[Crossref]

1970 (1)

A. E. Owen, “Semiconducting glasses part II: properties and interpretation,” Contemp. Phys. 11, 257–286 (1970).
[Crossref]

Abdel Harith, M.

M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
[Crossref]

Aggarwal, I. D.

Aktas, G.

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

Asobe, M.

Bian, S.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Bishop, S. G.

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

Brady, D. J.

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

Corrales, C.

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

De Neufville, J. P.

J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1973/74).
[Crossref]

DeCorby, R. G.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150–159 (1999).
[Crossref]

Fernandez-Pena, J.

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
[Crossref]

Galstyan, T. V.

Ganjoo, A.

A. Ganjoo and K. Shimakawa, “Transient and metastable photodarkening in amorphous chalcogenides,” J. Optoelectron. Adv. M. 3, 221–226 (2001).

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
[Crossref]

Gülsen, G.

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

Hammam, M.

M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
[Crossref]

Harbold, J. M.

Haugen, C. J.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Hisakuni, H.

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[Crossref]

Ilday, F. O.

Inci, M.N.

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

Itoh, H.

Jimenez-Garay, R.

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

Kasap, S. O.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Kobayashi, H.

Kolobov, A. V.

A. V. Kolobov and K. Tanaka, “Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale” in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, San Diego, 2001).

LaRochelle, S.

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
[Crossref]

Marquez, E.

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

McMullin, J. N.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Moss, S. C.

J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1973/74).
[Crossref]

Nguyen, V. Q.

Nordman, N.

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[Crossref]

Nordman, O.

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[Crossref]

Osman, W. H.

M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
[Crossref]

Ovshinsky, S. R.

J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1973/74).
[Crossref]

Owen, A. E.

A. E. Owen, “Semiconducting glasses part II: properties and interpretation,” Contemp. Phys. 11, 257–286 (1970).
[Crossref]

Pepper, J. C.

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

Petkov, K.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150–159 (1999).
[Crossref]

Peyghambarian, N.

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[Crossref]

Ramachandran, S.

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

Ramirez-Malo, J. B.

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

Richardson, K.

Robinson, T. G.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Saliminia, A.

Sanghera, J. S.

Savage, J. A.

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47, 101–116 (1982).
[Crossref]

Shaw, L. B.

Shimakawa, K.

A. Ganjoo and K. Shimakawa, “Transient and metastable photodarkening in amorphous chalcogenides,” J. Optoelectron. Adv. M. 3, 221–226 (2001).

Swanepoel, R

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

Swanepoel, R.

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E: Sci. Instrum. 17, 896–903 (1984).
[Crossref]

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

Tanaka, K.

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[Crossref]

A. V. Kolobov and K. Tanaka, “Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale” in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, San Diego, 2001).

Tonchev, D.

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Villares, P.

C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, “Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only,” Appl. Opt. 34, 7907–7913 (1995).
[Crossref] [PubMed]

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

Villeneuve, A.

Wise, F. W.

Yaradanakul, M.A.

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
[Crossref]

Contemp. Phys. (1)

A. E. Owen, “Semiconducting glasses part II: properties and interpretation,” Contemp. Phys. 11, 257–286 (1970).
[Crossref]

Infrared Phys Techn (1)

M.N. Inci, M.A. Yaradanakul, G. Gülşen, and G. Aktaş, “Characterization of the optical constants of As2Se3 thin films using a fiber optic technique,” Infrared Phys Techn 38, 227–232 (1997).
[Crossref]

J. Appl. Phys. (1)

O. Nordman, N. Nordman, and N. Peyghambarian, “Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films,” J. Appl. Phys. 84, 6055–6058 (1998).
[Crossref]

J. Lightwave Technol. (2)

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842(1999).
[Crossref]

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, “Micro-optical lenslets by photo-expansion in chalcogenide glasses,” J. Lightwave Technol. 15, 1371–1377 (1997).
[Crossref]

J. Non-Cryst. Solids (3)

J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1973/74).
[Crossref]

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47, 101–116 (1982).
[Crossref]

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150–159 (1999).
[Crossref]

J. Optoelectron. Adv. M. (1)

A. Ganjoo and K. Shimakawa, “Transient and metastable photodarkening in amorphous chalcogenides,” J. Optoelectron. Adv. M. 3, 221–226 (2001).

J. Phys. E: Sci. Instrum. (3)

R. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films,” J. Phys. E: Sci. Instrum. 17, 896–903 (1984).
[Crossref]

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976).
[Crossref]

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983).
[Crossref]

Mat. Sci. Eng. B-Solid (1)

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares, and R. Jimenez-Garay, “Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mat. Sci. Eng. B-Solid 25, 53–59 (1994).
[Crossref]

Opt. Lett. (2)

Solid State Commun. (1)

M. Hammam, M. Abdel Harith, and W. H. Osman, “Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum,” Solid State Commun. 59, 271–274 (1986).
[Crossref]

SPIE (1)

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, “Photoinduce Bragg gratings in amorphous As2Se3 thin films,” in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126–128 (2002).

Thin Solid Films (1)

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, “Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra,” Thin Solid Films 254, 83–91 (1995).
[Crossref]

Other (1)

A. V. Kolobov and K. Tanaka, “Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale” in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, San Diego, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1:
Fig. 1:

The thin film model, with wedge shaped profile.

Fig. 2:
Fig. 2:

Experimental setup used for exposing chalcogenide films.

Fig. 3:
Fig. 3:

Transmission spectrum of an As2Se3 film. ☐ - measured extreme ◆ - interpolated extreme

Fig. 4:
Fig. 4:

Cauchy dispersion relation fit to n2. n2 (λ) = 7.8605 × 10-13 λ-2 + 7.1308

Fig. 5:
Fig. 5:

Change in the refractive index at 1550 nm as a function of exposure time.

Fig.6:
Fig.6:

Change in refractive index as a function of wavelength.

Fig. 7:
Fig. 7:

Change in absorption at 560 nm as a function of exposure time.

Fig.8:
Fig.8:

Change in absorption and energy gap in terms of the Tauc Law.

Tables (1)

Tables Icon

Table 1: Determination of the thickness and refractive index of a non-uniform As2Se3 thin film

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d = d ̅ ± Δd
= 2 n d ̅
T M ( λ ) = λ 2 πnΔd a ( 1 b 2 ) 1 2 tan 1 [ 1 + b ( 1 b 2 ) 1 2 tan ( 2 πnΔd λ ) ]
T m ( λ ) = λ 2 πnΔd a ( 1 b 2 ) 1 2 tan 1 [ 1 b ( 1 b 2 ) 1 2 tan ( 2 πnΔd λ ) ]
d ̅ = λ 1 λ 2 2 ( λ 1 n 2 λ 2 n 1 )
n 2 ( λ ) = E λ 2 + F
α = 1 d ln ( 2 T i D A ( A 2 4 T i 2 BD ) 1 2 )

Metrics