Abstract

Photodarkening of amorphous As2Se3 thin films was generated by a 633-nm HeNe laser. The refractive index and absorption coefficient of the chalcogenide glass was determined, both before and after exposure, by analyzing the material’s transmission spectrum. In order to accurately determine the optical constants, the thin film’s non-uniform thickness was accounted for. The increase in the refractive index and the coefficient of absorption was investigated and was found to demonstrate saturation with increased exposure time. Index changes as high as 0.05, or 2%, were obtained in As2Se3, a promising glass for all-optical switching.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. A. Savage, "Optical properties of chalcogenide glasses," J. Non-Cryst. Solids 47, 101-116 (1982).
    [CrossRef]
  2. K. Petkov, P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
    [CrossRef]
  3. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  4. M. Asobe, H. Kobayashi, and H. Itoh, "Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber," Opt. Lett. 18, 1056-1058 (1993).
    [CrossRef] [PubMed]
  5. A. V. Kolobov and K. Tanaka, "Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale" in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, SanDiego, 2001).
  6. O. Nordman, N. Nordman, and N. Peyghambarian, "Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films," J. Appl. Phys. 84, 6055-6058 (1998).
    [CrossRef]
  7. H. Hisakuni and K. Tanaka, "Giant photoexpansion in As2S3 glass," Appl. Phys. Lett. 65, 2925-2927 (1994).
    [CrossRef]
  8. S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, "Micro-optical lenslets by photo-expansion in chalcogenide glasses," J. Lightwave Technol. 15, 1371-1377 (1997).
    [CrossRef]
  9. J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, "Photostructural transformations in amorphous As2Se3 and As2S3 films," J. Non-Cryst. Solids 13, 191-223 (1973/74).
    [CrossRef]
  10. J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film," J. Phys. E: Sci. Instrum. 9, 1002-1004 (1976).
    [CrossRef]
  11. R. Swanepoel, "Determination of the thickness and optical constants of amorphous silicon," J. Phys. E: Sci. Instrum. 16, 1214-1222 (1983).
    [CrossRef]
  12. M. Hammam, M. Abdel Harith, andW. H. Osman, "Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum," Solid State Commun. 59, 271-274 (1986).
    [CrossRef]
  13. R. Swanepoel, "Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films," J. Phys. E: Sci. Instrum. 17, 896-903 (1984).
    [CrossRef]
  14. J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares and R. Jimenez-Garay, "Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements," Mat. Sci. Eng. B-Solid 25, 53-59 (1994).
    [CrossRef]
  15. E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, "Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra," Thin Solid Films 254, 83-91 (1995).
    [CrossRef]
  16. M.N. Inci, M.A. Yaradanakul, G. Gülsen, and G. Aktas, "Characterization of the optical constants of As2Se3 thin films using a fiber optic technique," Infrared Phys. Technol. 38, 227-232 (1997)
    [CrossRef]
  17. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
    [CrossRef]
  18. C. Corrales, J. B. Ramirez-Malo, J. Fernandez-Pena, P. Villares, R. Swanepoel, and E. Marquez, "Determining the refractive index and average thickness of AsSe semiconducting glass films from wavelength measurements only," Appl. Opt. 34, 7907-7913 (1995).
    [CrossRef] [PubMed]
  19. A. E. Owen, "Semiconducting glasses part II: properties and interpretation," Contemp. Phys. 11, 257-286 (1970).
    [CrossRef]
  20. A. Ganjoo, K. Shimakawa, "Transient and metastable photodarkening in amorphous chalcogenides," J. Optoelectron. Adv. M. 3, 221-226 (2001).
  21. T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, "Photoinduce Bragg gratings in amorphous As2Se3 thin films," in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126-128 (2002).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Hisakuni and K. Tanaka, "Giant photoexpansion in As2S3 glass," Appl. Phys. Lett. 65, 2925-2927 (1994).
[CrossRef]

Contemp. Phys. (1)

A. E. Owen, "Semiconducting glasses part II: properties and interpretation," Contemp. Phys. 11, 257-286 (1970).
[CrossRef]

Infrared Phys. Technol. (1)

M.N. Inci, M.A. Yaradanakul, G. Gülsen, and G. Aktas, "Characterization of the optical constants of As2Se3 thin films using a fiber optic technique," Infrared Phys. Technol. 38, 227-232 (1997)
[CrossRef]

J. Appl. Phys. (1)

O. Nordman, N. Nordman, and N. Peyghambarian, "Electron beam induced changes in the refractive index and thin film thickness of amorphous AsxS100-x and AsxSe100-x films," J. Appl. Phys. 84, 6055-6058 (1998).
[CrossRef]

J. Lightwave Technol. (2)

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
[CrossRef]

S. Ramachandran, J. C. Pepper, D. J. Brady, and S. G. Bishop, "Micro-optical lenslets by photo-expansion in chalcogenide glasses," J. Lightwave Technol. 15, 1371-1377 (1997).
[CrossRef]

J. Non-Cryst. Solids (3)

J. P. De Neufville, S. C. Moss, and S. R. Ovshinsky, "Photostructural transformations in amorphous As2Se3 and As2S3 films," J. Non-Cryst. Solids 13, 191-223 (1973/74).
[CrossRef]

J. A. Savage, "Optical properties of chalcogenide glasses," J. Non-Cryst. Solids 47, 101-116 (1982).
[CrossRef]

K. Petkov, P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

J. Optoelectron. Adv. M. (1)

A. Ganjoo, K. Shimakawa, "Transient and metastable photodarkening in amorphous chalcogenides," J. Optoelectron. Adv. M. 3, 221-226 (2001).

J. Phys. E: Sci. Instrum. (3)

R. Swanepoel, "Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films," J. Phys. E: Sci. Instrum. 17, 896-903 (1984).
[CrossRef]

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film," J. Phys. E: Sci. Instrum. 9, 1002-1004 (1976).
[CrossRef]

R. Swanepoel, "Determination of the thickness and optical constants of amorphous silicon," J. Phys. E: Sci. Instrum. 16, 1214-1222 (1983).
[CrossRef]

Mat. Sci. Eng. B-Solid (1)

J. B. Ramirez-Malo, E. Marquez, C. Corrales, P. Villares and R. Jimenez-Garay, "Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements," Mat. Sci. Eng. B-Solid 25, 53-59 (1994).
[CrossRef]

Opt. Lett. (2)

Solid State Commun. (1)

M. Hammam, M. Abdel Harith, andW. H. Osman, "Optical constants of thermally evaporated arsenic triselenide using only transmission spectrum," Solid State Commun. 59, 271-274 (1986).
[CrossRef]

Thin Solid Films (1)

E. Marquez, J. B. Ramirez-Malo, P. Villares, R. Jimenez-Garay, and R Swanepoel, "Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra," Thin Solid Films 254, 83-91 (1995).
[CrossRef]

Other (2)

T. G. Robinson, R. G. DeCorby, C. J. Haugen, J. N. McMullin, S. Bian, S. O. Kasap, and D. Tonchev, "Photoinduce Bragg gratings in amorphous As2Se3 thin films," in Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, SPIE TD01, 126-128 (2002).

A. V. Kolobov and K. Tanaka, "Photoinduced phenomena in amorphous chalcogenides: from phenomenology to nanoscale" in Handbook of advanced electronic and photonic materials and devices, volume 5: chalcogenide glasses and sol-gel materials, H. S. Nalwa, ed. (Academic Press, SanDiego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1:
Fig. 1:

The thin film model, with wedge shaped profile.

Fig. 2:
Fig. 2:

Experimental setup used for exposing chalcogenide films.

Fig. 3:
Fig. 3:

Transmission spectrum of an As2Se3 film. ☐ - measured extreme ◆ - interpolated extreme

Fig. 4:
Fig. 4:

Cauchy dispersion relation fit to n2. n2 (λ) = 7.8605 × 10-13 λ-2 + 7.1308

Fig. 5:
Fig. 5:

Change in the refractive index at 1550 nm as a function of exposure time.

Fig.6:
Fig.6:

Change in refractive index as a function of wavelength.

Fig. 7:
Fig. 7:

Change in absorption at 560 nm as a function of exposure time.

Fig.8:
Fig.8:

Change in absorption and energy gap in terms of the Tauc Law.

Tables (1)

Tables Icon

Table 1: Determination of the thickness and refractive index of a non-uniform As2Se3 thin film

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d = d ̅ ± Δd
= 2 n d ̅
T M ( λ ) = λ 2 πnΔd a ( 1 b 2 ) 1 2 tan 1 [ 1 + b ( 1 b 2 ) 1 2 tan ( 2 πnΔd λ ) ]
T m ( λ ) = λ 2 πnΔd a ( 1 b 2 ) 1 2 tan 1 [ 1 b ( 1 b 2 ) 1 2 tan ( 2 πnΔd λ ) ]
d ̅ = λ 1 λ 2 2 ( λ 1 n 2 λ 2 n 1 )
n 2 ( λ ) = E λ 2 + F
α = 1 d ln ( 2 T i D A ( A 2 4 T i 2 BD ) 1 2 )

Metrics