Abstract

Two high-PMD long distance routes were characterized and used to test an optical polarization mode dispersion compensator (PMDC) under field conditions. For this trial, 110 km routes with mean PMD values of 25 and 26.5 ps were provisioned with commercial WDM transport equipment and tested for several weeks. The route was comprised of three spans of characterized fiber that followed railroad tracks. We show the temporal variation of the output polarization state and the evolution of first- and second-order PMD spectra over 7 days. The deployment of a variable-length PMDC on these links allowed error-free transmission of an OC-192 signal. Splitting the output to receivers with and without PMDC demonstrated specific PMD events that caused errors in the absence of a PMDC.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.L. Hefner, �??Accurate automated measurement of polarization mode dispersion and principal state variation using Jones matrix eigenanalysis,�?? IEEE Photon. Technol. Lett. 5, 814-817 (1993).
    [CrossRef]
  2. J. N. Damask, �??A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensators,�?? Optical Fiber Communication Conference 2000, ThB3-1 �?? THB3-3.
  3. D.S. Waddy, L. Chen, X. Bao, �??Theoretical and experimental study of the dynamics of polarization-mode dispersion,�?? IEEE Photon. Technol. Lett. 4, 468-470 (2002).
    [CrossRef]
  4. M.W. Chbat, J.P. Soignb, T. Fuerst, J.T. Anthony, S. Lanne, H. Fevrier, B.M. Desthieux, A.H. Bush, and D. Penninckx, �??Long term field demonstration of optical PMD compensation on an installed OC-192 link,�?? in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 1999) post deadline session, pp. PD12/1 - PD12/3.
  5. D.A. Watley, K.S. Farley, W.S. Lee, G. Bordogna, B.J. Shaw, and A.P. Hadjifotiou, �??Field evaluation of an optical PMD compensator using an installed 10 Gbit/s system,�?? in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2000), Session ThB, pp.37-39
  6. M. Karlsson, J Brentel and P.A. Andrekson �??Long-TermMeasurement of PMD and Polarization Drift in Installed Fibers,�?? IEEE J. Lightwave Technol. 18, 941-951 (2000).
    [CrossRef]

IEEE J. Lightwave Technol.

M. Karlsson, J Brentel and P.A. Andrekson �??Long-TermMeasurement of PMD and Polarization Drift in Installed Fibers,�?? IEEE J. Lightwave Technol. 18, 941-951 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

B.L. Hefner, �??Accurate automated measurement of polarization mode dispersion and principal state variation using Jones matrix eigenanalysis,�?? IEEE Photon. Technol. Lett. 5, 814-817 (1993).
[CrossRef]

D.S. Waddy, L. Chen, X. Bao, �??Theoretical and experimental study of the dynamics of polarization-mode dispersion,�?? IEEE Photon. Technol. Lett. 4, 468-470 (2002).
[CrossRef]

Optical Fiber Commun. Conference 2000

J. N. Damask, �??A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensators,�?? Optical Fiber Communication Conference 2000, ThB3-1 �?? THB3-3.

Optical Fiber Communication Conference

M.W. Chbat, J.P. Soignb, T. Fuerst, J.T. Anthony, S. Lanne, H. Fevrier, B.M. Desthieux, A.H. Bush, and D. Penninckx, �??Long term field demonstration of optical PMD compensation on an installed OC-192 link,�?? in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 1999) post deadline session, pp. PD12/1 - PD12/3.

D.A. Watley, K.S. Farley, W.S. Lee, G. Bordogna, B.J. Shaw, and A.P. Hadjifotiou, �??Field evaluation of an optical PMD compensator using an installed 10 Gbit/s system,�?? in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2000), Session ThB, pp.37-39

Supplementary Material (2)

» Media 1: MOV (1278 KB)     
» Media 2: MOV (1903 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.A)
Fig. 1.A)

DGD as a function of wavelength and time for a fiber pair on span 3.

Fig. 1.B)
Fig. 1.B)

SOPMD as a function of wavelength and time for a fiber pair on span 3.

Fig. 1.C)
Fig. 1.C)

Spectrum movie of 160 hours – spectrum1.mov (1,278 KB)

Fig. 2.A)
Fig. 2.A)

DGD as a function of wavelength and time for a second fiber pair.

Fig. 2.B)
Fig. 2.B)

SOPMD as a function of wavelength and time for a second fiber pair.

Fig 2.C)
Fig 2.C)

Spectrum movie of 174 hours – spectrum2.mov (1,904 KB)

Fig 3.
Fig 3.

Histogram of SOP excursions for link #1

Fig. 4.
Fig. 4.

The measured Stokes parameters and DOP for a small part of the time series acquired during polarimeter measurements of SOP changes

Fig. 5.A)
Fig. 5.A)

Log-Log histogram of SOP excursion in a 37 km fiber with 18ps PMD.

Fig. 5.B)
Fig. 5.B)

Log-Log histogram of SOP excursions in 110km, 3-span link with 25 ps PMD.

Fig. 6.
Fig. 6.

Diagram of transport system configuration

Tables (1)

Tables Icon

Table 1. Link PMD data taken with the interferometric PMD field unit

Metrics