Abstract

We demonstrate a technique for obtaining fully dynamic multiple-beam optical tweezers using the generalized phase contrast (GPC) method and a phase-only spatial light modulator (SLM). The GPC method facilitates the direct transformation of an input phase pattern to an array of high-intensity beams, which can function as efficient multiple optical traps. This straightforward process enables an adjustable number of traps and real-time control of the position, size, shape and intensity of each individual tweezer-beam in arbitrary arrays by encoding the appropriate phase pattern on the SLM. Experimental results show trapping and dynamic manipulation of multiple micro-spheres in a liquid solution.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedic, J. E. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. K. Svoboda and Block S. M, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef] [PubMed]
  3. R. E. Holmlin, M. Schiavoni, C. Y. Chen, S. P. Smith, M. G. Prentiss, and G. M. Whitesides, "Light-driven microfabrication: Assembly of multi-component, three-dimensional structures by using optical tweezers," Angew. Chem. Int. Ed. Engl. 39, 3503 (2000).
    [CrossRef] [PubMed]
  4. R. L. Eriksen, P.C. Mogensen, and J. Glückstad, "Multiple beam optical tweezers generated by the generalized phase contrast method," Opt. Lett. 27, 267 (2002).
    [CrossRef]
  5. E. Fällman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107 (1997).
    [CrossRef] [PubMed]
  6. Y. Ogura, K. Kagawa, and J. Tanida, "Optical Manipulation of Microscopic Objects by means of Vertical-Cavity Surface-Emitting Laser Array Sources," Appl. Opt. 40, 5430 (2001).
    [CrossRef]
  7. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101 (2002).
    [CrossRef] [PubMed]
  8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern formation and flow control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463 (1991).
    [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
    [CrossRef]
  10. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810 (2001).
    [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77 (2000).
    [CrossRef]
  12. J. Glückstad, "Phase contrast imaging," U.S. patent 6,011,874 (January 4 2000).
  13. J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268 (2001).
    [CrossRef]
  14. Y. Kobayashi, et al, "Compact High-efficiency Electrically-addressable Phase-only Spatial Light Modulator," Proc. of SPIE 3951, 158 (2000).
    [CrossRef]
  15. M. Friese, T. Nieminen, N. Heckenberg and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
    [CrossRef]
  16. E. Higurashi, R. Sawada and T. Ito, "Optically induced angular alignment of trapped birefringent microobjects by linear polarization," Appl. Phys. Lett. 73, 3034 (1998)
    [CrossRef]
  17. S. Grover, A. Skirtach, R. Gauther and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14 (2001).
    [CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

R. E. Holmlin, M. Schiavoni, C. Y. Chen, S. P. Smith, M. G. Prentiss, and G. M. Whitesides, "Light-driven microfabrication: Assembly of multi-component, three-dimensional structures by using optical tweezers," Angew. Chem. Int. Ed. Engl. 39, 3503 (2000).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and Block S. M, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Higurashi, R. Sawada and T. Ito, "Optically induced angular alignment of trapped birefringent microobjects by linear polarization," Appl. Phys. Lett. 73, 3034 (1998)
[CrossRef]

J. Biomed. Opt. (1)

S. Grover, A. Skirtach, R. Gauther and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14 (2001).
[CrossRef] [PubMed]

Nature (1)

M. Friese, T. Nieminen, N. Heckenberg and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998).
[CrossRef]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77 (2000).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

Y. Kobayashi, et al, "Compact High-efficiency Electrically-addressable Phase-only Spatial Light Modulator," Proc. of SPIE 3951, 158 (2000).
[CrossRef]

Rev. Sci. Instrum. (2)

E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101 (2002).
[CrossRef] [PubMed]

Other (1)

J. Glückstad, "Phase contrast imaging," U.S. patent 6,011,874 (January 4 2000).

Supplementary Material (1)

» Media 1: MPG (2306 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1:
Figure 1:

The schematic diagram of the experimental set-up for the dynamic multiple-beam phase contrast-based optical tweezers system using a reflection-mode phase-only spatial light modulator.

Figure 2.
Figure 2.

Image (a) shows a gray-scale representation of the phase pattern that is addressed on the SLM to generate a 4×4 optical trap and image (b) shows the efficient trapping of 16 particles (2 μm in diameter).

Figure 3.
Figure 3.

An image sequence showing the dynamic rotation of eight-trapped polystyrene beads (2 μm in diameter) in the phase-contrast-generated optical traps. The outer six particles rotate clock-wise 1/8 of a full rotation while the inner two particles rotate counter clock-wise nearly one full rotation. [Media 1]

Metrics