Abstract

We present a new technique for direct measurements of degenerate two-photon absorption (TPA) spectra of two-photon absorbing materials including non-fluorescent samples. This technique is based on the use of an intense single continuum-generation beam as the coherent white-light source with specially flattened spectral distribution. The different spectral components of the continuum beam are spatially dispersed and then passed through the sample material along different pathways so that nondegenerate TPA processes among different input spectral components can be avoided. By comparing the input and transmitted continuum spectral distributions, the TPA spectrum for a given sample can be obtained. As an example, the continuous TPA spectrum (from 550 to 1000 nm) is measured for a novel two-photon-absorbing compound (AF-389) which exhibits an extremely high TPA cross-section value of ~1×10-20 cm4/GW, or ~249 GM, around ~800-nm spectral range in femtosecond regime.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, and P. N. Prasad, �??Highly active two-photon dyes: design, synthesis, and characterization toward application,�?? Chem. Mater. 10, 1863 (1998).
    [CrossRef]
  2. M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, �??Design of organic molecules with large two-photon absorption cross sections,�?? Science, 281, 1653 (1998).
    [CrossRef] [PubMed]
  3. K. D. Belfield, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, and R. A. Negres, �??New Two-Photon Absorbing Fluorene Derivatives: Synthesis and Nonlinear Optical Characterization,�?? Org. Lett. 1, 1575 (1999).
    [CrossRef]
  4. S. J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, and P. N. Prasad, �??Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures,�?? J. Phys. Chem. B 103, 10741 (1999).
    [CrossRef]
  5. O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, and P. N. Prasad, �??New class of twophoton-absorbing chromophores based on dithienothiophene,�?? Chem. Mater. 12, 284 (2000).
    [CrossRef]
  6. A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, �??Novel twophoton absorbing dendritic structures,�?? Chem. Mater. 12, 2838 (2000).
    [CrossRef]
  7. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, �??Structure-Property Relationship for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives,�?? J. Am. Chem. Soc. 122, 9500 (2000).
    [CrossRef]
  8. G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L.-S. Tan, and R. Kannan, �??Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium,�?? J. Phys. Chem A, 104, 4805 (2000).
    [CrossRef]
  9. R. Kannan, G. S. He, L. Yuan, F. Xu, P. N. Prasad, A. G. Dombroskie, B. A. Reinhardt, J. W. Baur, R. A. Vaia, and L.-S. Tan, �??Diphenylaminofluorene-based Two-Photon-Absorbing Chromophores with Various p-Electron Acceptors,�?? Chem. Mater. 13, 1896-1905(2001).
    [CrossRef]
  10. M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, �??Dendrimer molecules with record large two-photon absorption cross section,�?? Opt. Lett. 26, 1081-1083(2001).
    [CrossRef]
  11. P. A. Gass, I. Abram, R. Raj, and M. Schott, �??Highly sensitive optical measurement techniques based on acoustooptic devices,�?? J. Chem. Phys. 100, 88 (1994).
    [CrossRef]
  12. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, �??Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,�?? Appl. Phys. Lett. 65, 2648 (1994).
    [CrossRef]
  13. G. P. Banfi, D. Fortusini, P.Dainesi, D. Grando, and S. Sottini, �??Two-photon absorption spectrum of 3-butoxycarbonylmethylurethane polydiacetylene thin films,�?? J. Chem. Phys. 108, 4319 (1998).
    [CrossRef]
  14. G. A. Bickel and K. K. Innes, �??Two-photon spectra of the S1-S0 transition in glyoxal,�?? J Chem. Phys. 86, 1752 (1987).
    [CrossRef]
  15. A. Fischer, C. Cremer, and E. H. K. Stelzer, �??Florescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,�?? Appl. Opt. 34, 1989 (1995).
    [CrossRef] [PubMed]
  16. C. Xu and W. W. Webb, �??Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,�?? J. Opt. Soc. Am. B 13, 481 (1996).
    [CrossRef]
  17. R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000 �? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584 (1970);
    [CrossRef]
  18. R. R. Alfano, Ed., The Supercontinuum Laser Sources (Springer-Verlag, New York, 1989).
  19. G. E. Busch, R. P. Jones, and P. M. Rentzepis, �??Picosecond spectroscopy using a picosecond continuum,�?? Chem. Phys. Lett. 18, 178 (1973).
    [CrossRef]
  20. R. A. Negres, E. W. Van Stryland, D. J. Hagan, K. D. Belfield, K. J. Schafer, O. V. Przhonska, and B. A. Reinhardt, �??Nonlinear spectrometer for characterization of organic and polymeric molecules,�?? Proc. SPIE �?? Int. Soc. Opt. Eng. 3796, 88 (1999).
  21. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, �??Two-phton spectroscopy and analysis with a white-light continuum generation,�?? Opt. Lett. 27, 270(2002).
    [CrossRef]
  22. G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, �??Difference of spectral superbroading behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,�?? Appl. Opt. 32, 4507 (1993).
    [CrossRef] [PubMed]
  23. L. W. Tutt and T. F. Boggess, �??A review of optical limiting mechanism and devicesusing organics, fullerenes, semiconductors, and other materials,�?? Prog. Quant. Electron. 17, 299 (1993).
    [CrossRef]
  24. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. Mckellar, and A. G. Dillard, �??Two-photon absorption and optical-limiting properties of novel organic compounds,�?? Opt. Lett. 20, 435 (1995).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, �??Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,�?? Appl. Phys. Lett. 65, 2648 (1994).
[CrossRef]

Chem. Mater.

R. Kannan, G. S. He, L. Yuan, F. Xu, P. N. Prasad, A. G. Dombroskie, B. A. Reinhardt, J. W. Baur, R. A. Vaia, and L.-S. Tan, �??Diphenylaminofluorene-based Two-Photon-Absorbing Chromophores with Various p-Electron Acceptors,�?? Chem. Mater. 13, 1896-1905(2001).
[CrossRef]

B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, and P. N. Prasad, �??Highly active two-photon dyes: design, synthesis, and characterization toward application,�?? Chem. Mater. 10, 1863 (1998).
[CrossRef]

O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, and P. N. Prasad, �??New class of twophoton-absorbing chromophores based on dithienothiophene,�?? Chem. Mater. 12, 284 (2000).
[CrossRef]

A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, �??Novel twophoton absorbing dendritic structures,�?? Chem. Mater. 12, 2838 (2000).
[CrossRef]

Chem. Phys. Lett.

G. E. Busch, R. P. Jones, and P. M. Rentzepis, �??Picosecond spectroscopy using a picosecond continuum,�?? Chem. Phys. Lett. 18, 178 (1973).
[CrossRef]

J Chem. Phys.

G. A. Bickel and K. K. Innes, �??Two-photon spectra of the S1-S0 transition in glyoxal,�?? J Chem. Phys. 86, 1752 (1987).
[CrossRef]

J. Am. Chem. Soc.

M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Brédas, �??Structure-Property Relationship for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives,�?? J. Am. Chem. Soc. 122, 9500 (2000).
[CrossRef]

J. Chem. Phys.

P. A. Gass, I. Abram, R. Raj, and M. Schott, �??Highly sensitive optical measurement techniques based on acoustooptic devices,�?? J. Chem. Phys. 100, 88 (1994).
[CrossRef]

G. P. Banfi, D. Fortusini, P.Dainesi, D. Grando, and S. Sottini, �??Two-photon absorption spectrum of 3-butoxycarbonylmethylurethane polydiacetylene thin films,�?? J. Chem. Phys. 108, 4319 (1998).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem A

G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L.-S. Tan, and R. Kannan, �??Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium,�?? J. Phys. Chem A, 104, 4805 (2000).
[CrossRef]

J. Phys. Chem. B

S. J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, and P. N. Prasad, �??Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures,�?? J. Phys. Chem. B 103, 10741 (1999).
[CrossRef]

Opt. Lett.

Org. Lett.

K. D. Belfield, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, and R. A. Negres, �??New Two-Photon Absorbing Fluorene Derivatives: Synthesis and Nonlinear Optical Characterization,�?? Org. Lett. 1, 1575 (1999).
[CrossRef]

Phys. Rev. Lett.

R. R. Alfano and S. L. Shapiro, �??Emission in the region 4000 to 7000 �? via four-photon coupling in glass,�?? Phys. Rev. Lett. 24, 584 (1970);
[CrossRef]

Proc. SPIE

R. A. Negres, E. W. Van Stryland, D. J. Hagan, K. D. Belfield, K. J. Schafer, O. V. Przhonska, and B. A. Reinhardt, �??Nonlinear spectrometer for characterization of organic and polymeric molecules,�?? Proc. SPIE �?? Int. Soc. Opt. Eng. 3796, 88 (1999).

Prog. Quant. Electron.

L. W. Tutt and T. F. Boggess, �??A review of optical limiting mechanism and devicesusing organics, fullerenes, semiconductors, and other materials,�?? Prog. Quant. Electron. 17, 299 (1993).
[CrossRef]

Science

M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, and C. Xu, �??Design of organic molecules with large two-photon absorption cross sections,�?? Science, 281, 1653 (1998).
[CrossRef] [PubMed]

Other

R. R. Alfano, Ed., The Supercontinuum Laser Sources (Springer-Verlag, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for white light continuum generation and degenerate TPA spectral measurement. ND: neutral density filters.

Fig. 2.
Fig. 2.

Relative spectral curves of the continuum generation from heavy water: (a) at eight different input average power levels from 0.4 to 35 mW, (b) at 35-mW input level but after passing through a spatially selective silver-strip coating attenuator.

Fig. 3.
Fig. 3.

Chemical structure of AF389, a strongly two-photon absorbing chromophore.

Fig. 4.
Fig. 4.

(a) Relative spectral intensity distributions of the continuum after passing through a pure THF sample and an AF389/THF sample respectively, (b) Intensity-dependent transmissivity change due to AF389 chromophore, and (c) Relative TPA coefficient curve as a function of wavelength for AF389 in THF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = I AF ( λ ) I THF ( λ )
T ( λ ) = 1 1 + βzI THF ( λ ) .
β ( λ ) = 1 T ( λ ) I THF T ( λ ) z = 1 T ( λ ) I AF ( λ ) z .
σ 2 ( λ ) = β ( λ ) N A d 0 × 10 3 ( cm 4 GW ) ,
σ 2 ( λ ) = × σ 2 ( λ ) = × β ( λ ) N A d 0 × 10 3 ( cm 4 sec ) .

Metrics