Abstract

Hollow glass fibers for delivery of mid-infrared lasers are drawn from a glass-tube preform to produce a long and flexible hollow fiber at low cost. To utilize the interference effect of the thin glass wall, the wall thickness is controlled by the drawing speed. A Pyrex-glass hollow fiber with an inner diameter of 280 μm and a wall thickness of 9.92 μm shows a low loss at 2.94 μm of the Er:YAG laser wavelength when coated with a silver film on the outer surface.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Abel, J. Hirsch, and J. A. Harrington, �??Hollow glass wave-guides for broad-band infrared transmission,�?? Opt. Lett. 19, 1034-1036 (1994).
    [CrossRef] [PubMed]
  2. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, �??Plastic hollow fibers as a selective infrared radiation transmitting medium,�?? J. Appl. Phys. 72, 3878-3885 (1992).
    [CrossRef]
  3. P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, and K. Burbank, �??Performance of a dielectric-coated monolithic hollow metallic wave-guide,�?? Materials Lett. 16, 150-156 (1993).
    [CrossRef]
  4. Y. Abe, Y. Matsuura, Y. Shi, Y. Wang, H. Uyama, and M. Miyagi, �??Polymer-coated hollow fiber for CO2 laser delivery,�?? Opt. Lett. 23, 89-90 (1998).
    [CrossRef]
  5. T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, �??GeO2-ZnO-K2O glass as the cladding material of 940-cm-1 CO2 laser-light transmitting hollow-core waveguide,�?? J. Appl. Phys. 53, 5484-5490 (1982).
    [CrossRef]
  6. T. Hidaka, T. Morikawa, and J. Shimada, �??Hollow-core oxide-glass cladding optical fibers for middle-infrared region,�?? J. Appl. Phys. 52, 4467-4471 (1981).
    [CrossRef]
  7. Y. Fink, �??Hollow dielectric omniguide fibers for medical applications,�?? in Optical Fibers and Sensors for Medical Applications II, Israel Gannot, ed., Proc. SPIE 4616 (in press).
  8. M. Miyagi, �??Bending losses in hollow and dielectric tube leaky waveguides,�?? Appl. Opt. 20, 1221-1229 (1981).
    [CrossRef] [PubMed]
  9. M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguides for infrared transmission,�?? IEEE J. Lightwave Technol. LT-2, 116-126 (1984).
    [CrossRef]
  10. E. D. Palik, Ed., Handbook of Optical Constants of Solids, (Academic, New York, 1985).

Appl. Opt.

IEEE J. Lightwave Technol.

M. Miyagi, and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguides for infrared transmission,�?? IEEE J. Lightwave Technol. LT-2, 116-126 (1984).
[CrossRef]

J. Appl. Phys.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, �??GeO2-ZnO-K2O glass as the cladding material of 940-cm-1 CO2 laser-light transmitting hollow-core waveguide,�?? J. Appl. Phys. 53, 5484-5490 (1982).
[CrossRef]

T. Hidaka, T. Morikawa, and J. Shimada, �??Hollow-core oxide-glass cladding optical fibers for middle-infrared region,�?? J. Appl. Phys. 52, 4467-4471 (1981).
[CrossRef]

M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, �??Plastic hollow fibers as a selective infrared radiation transmitting medium,�?? J. Appl. Phys. 72, 3878-3885 (1992).
[CrossRef]

Materials Lett.

P. Bhardwaj, O. J. Gregory, C. Morrow, G. Gu, and K. Burbank, �??Performance of a dielectric-coated monolithic hollow metallic wave-guide,�?? Materials Lett. 16, 150-156 (1993).
[CrossRef]

Opt. Lett.

Proc. SPIE

Y. Fink, �??Hollow dielectric omniguide fibers for medical applications,�?? in Optical Fibers and Sensors for Medical Applications II, Israel Gannot, ed., Proc. SPIE 4616 (in press).

Other

E. D. Palik, Ed., Handbook of Optical Constants of Solids, (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Theoretical losses of the HE11 mode in the SiO2 tube waveguide and SiO2/Ag waveguide with an inner diameter of 280 μm.

Fig. 2.
Fig. 2.

Schematic view of silver coating setup.

Fig. 3.
Fig. 3.

Measured and theoretical loss spectra of SiO2-tube-leaky fiber with an inner diameter of 280 μm and a wall thickness of 9.92 μm. The fiber is excited by an incoherent beam with a divergence angle of 10° at FWHM.

Fig. 4.
Fig. 4.

Measured and theoretical loss spectra of SiO2-hollow fiber with a silver cover film. The inner diameter is 280 μm and the wall thickness of SiO2 is 9.92 μm. The fiber is excited by an incoherent beam with a divergence angle of 10° at FWHM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = 1 n 2 1 · λ 2 ( m + 1 π tan 1 n ( n 2 1 ) 1 4 ) ( m = 0,1,2 , )

Metrics