Abstract

A one-step method for microfabrication of a diffractive lens mold with continuous relief, including a solgel process for replication, is presented. The mold is fabricated by focused ion beam milling (FIBM) on a substrate of bulk silicon and is then used directly for replication of the diffractive structure by means of a hybrid solgel glass stamping process. The surface roughness of the replica, Ra, is 4 nm over a 5 μm × 5 μm area. The measured diffraction efficiency is 86% and is influenced by accumulated mold geometry and solgel process errors. The demonstrated process of direct stamping by use of the master fabricated by FIBM offers the potential for mass production at very low cost.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Jiang, X. Yuan, Z. Yun, Y.-C. Chan, and Y.-L. Lam, �??Fabrication of microlens in photosensitive hybrid sol-gel films using a gray scale mask,�?? Mater. Sci. Eng. C 16, 99�??102 (2000).
    [CrossRef]
  2. P. Coudray, P. Etienne, Y. Moreau, J. Porque, and S.i. Najafi, �??Sol-gel channel waveguide on silicon: fast direct imprinting,�?? Opt. Commun. 143, 199�??202 (1997).
    [CrossRef]
  3. Y. Fu and N. K. A. Bryan, �??Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling,�?? Opt. Express 7, 141�??147 (2000) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-141">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-141</a>.
    [CrossRef]
  4. Y. Fu, N. K. A. Bryan, and O. N. Shing, �??Investigation of direct milling of micro-optical elements with continuous relief on a substrate by focused ion beam technology,�?? Opt. Eng. 39, 3008�??3013 (2000).
    [CrossRef]
  5. L. B. Lesem, P. M. Hirsch and J. A. Jordan, Jr., �??The kinoform: a new wavefront reconstruction devices,�?? IBM J. Res. Develop. 13, 150�??155 (1969).
    [CrossRef]
  6. P. P. Clark and C. Londono, �??Production of kinoforms by single-point diamond turning,�?? Opt. News 15, 39�??40 (1989).
    [CrossRef]
  7. B. E. Bernacki, A. C. Miller, L. C. Maxey, and J. P. Cunningham, �??Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,�?? in Optical Manufacturing and Testing, V. J. Dougherty and H. P. Stahl, eds., Proc. SPIE 2536, 463�??474 (1995).
    [CrossRef]
  8. J. Futhey and M. Fleining, �??Superzone diffractive lenses,�?? in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4�??6.
  9. M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, �??Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,�?? Opt. Eng. 33, 3556�??3566 (1994).
    [CrossRef]
  10. M. Ekberg, F. Nikolajeff, M. Larsson, and S. Hard, �??Proximity-compensated blazed transmission grating manufacture with direct-writing, electron beam lithography,�?? Appl. Opt. 33, 103�??107 (1994).
    [CrossRef] [PubMed]
  11. D. C. O�?? Shea and W. S. Rockward, �??Gray scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,�?? Appl. Opt. 34, 7518�??7526 (1995).
    [CrossRef]
  12. T. J. Suleski and D. C. O�?? Shea, �??Gray scale masks for diffractive-optics fabrication: commercial slide imagers,�?? Appl. Opt. 34, 7507�??7517 (1995).
    [CrossRef] [PubMed]
  13. M. T. Duignan and G. P. Behrmann, �??Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,�?? Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314�??317.
  14. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), p.165.
  15. Y. Fu and N. K. A. Bryan, �??Microfabrication of microlens mold by focused ion beam technology,�?? Microelectron. Eng. 56, 333�??238 (2001).
    [CrossRef]
  16. V. T. Airoldi, C. F. M. Borges, M. Oisan, and D. Guay, �??High optical transparency and good adhesion of diamond films deposited on fused silica windows with a surface-wave sustained plasma,�?? Appl. Opt. 36, 4400�??4402 (1997).
    [CrossRef] [PubMed]

Appl. Opt.

IBM J. Res. Develop.

L. B. Lesem, P. M. Hirsch and J. A. Jordan, Jr., �??The kinoform: a new wavefront reconstruction devices,�?? IBM J. Res. Develop. 13, 150�??155 (1969).
[CrossRef]

Mater. Sci. Eng. C

H. Jiang, X. Yuan, Z. Yun, Y.-C. Chan, and Y.-L. Lam, �??Fabrication of microlens in photosensitive hybrid sol-gel films using a gray scale mask,�?? Mater. Sci. Eng. C 16, 99�??102 (2000).
[CrossRef]

Microelectron. Eng.

Y. Fu and N. K. A. Bryan, �??Microfabrication of microlens mold by focused ion beam technology,�?? Microelectron. Eng. 56, 333�??238 (2001).
[CrossRef]

Opt. Commun.

P. Coudray, P. Etienne, Y. Moreau, J. Porque, and S.i. Najafi, �??Sol-gel channel waveguide on silicon: fast direct imprinting,�?? Opt. Commun. 143, 199�??202 (1997).
[CrossRef]

Opt. Eng.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, �??Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,�?? Opt. Eng. 33, 3556�??3566 (1994).
[CrossRef]

Y. Fu, N. K. A. Bryan, and O. N. Shing, �??Investigation of direct milling of micro-optical elements with continuous relief on a substrate by focused ion beam technology,�?? Opt. Eng. 39, 3008�??3013 (2000).
[CrossRef]

Opt. Express

Opt. News

P. P. Clark and C. Londono, �??Production of kinoforms by single-point diamond turning,�?? Opt. News 15, 39�??40 (1989).
[CrossRef]

OSA Technical Digest Series

J. Futhey and M. Fleining, �??Superzone diffractive lenses,�?? in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4�??6.

M. T. Duignan and G. P. Behrmann, �??Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,�?? Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314�??317.

Proc. SPIE 2536

B. E. Bernacki, A. C. Miller, L. C. Maxey, and J. P. Cunningham, �??Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,�?? in Optical Manufacturing and Testing, V. J. Dougherty and H. P. Stahl, eds., Proc. SPIE 2536, 463�??474 (1995).
[CrossRef]

Other

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, New York, 2000), p.165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM micrograph of DOE mold fabricated by use of FIBM on a silicon substrate.

Fig. 2.
Fig. 2.

Two-dimensional profile of the DOE bulk silicon mold measured by AFM.

Fig. 3.
Fig. 3.

SEM micrograph of DOE replicated in hybrid solgel film.

Fig. 4.
Fig. 4.

Two-dimensional profile of DOE replicated in hybrid solgel film, measured by AFM.

Fig. 5.
Fig. 5.

Comparison of designed DOE relief, FIB master profile, and replica profile.

Tables (1)

Tables Icon

Table 1. Optical performance data for several DOE fabrication methods as reported in the literature and in our hybrid solgels

Metrics