Abstract

We demonstrate the potential of a new optical imaging system to directly obtain a longitudinal slice of a biological sample. The system, based on a single-shot optical correlator, operates a time-to-space conversion and an optical time-gating by sum-frequency generation in a nonlinear crystal. Owing to the high speed acquisition of the technique, internal structures of in-vivo tissues can be imaged at video rate. With this apparatus, we recorded longitudinal images of ex vivo mouse ear and in vivo human skin with a depth resolution of approximately 15 μm.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.R. Masters and P.T.C. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2-10 (2001), <a href="http://www.opticsexpress.org/oearchive/source/27001.htm">http://www.opticsexpress.org/oearchive/source/27001.htm</a>
    [CrossRef] [PubMed]
  2. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  3. A. Zumbusch, G.R. Holtom and X.S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  4. E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberl?, C. Rulli?re and A. Mito, "Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+:forterite laser," Opt. Lett. 25, 929-931 (2000).
    [CrossRef]
  5. G. Le Tolguenec, E. Lantz and F. Devaux, "Imaging through scattering media by parametric amplification of images: study of the resolution and the signal-to-noise ratio," Appl. Opt. 36, 8292-8297 (1997).
    [CrossRef]
  6. S. Bourquin, P. Seitz and R.P. Salath?, "Optical coherence tomography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001).
    [CrossRef]
  7. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl?, and C. Rulli?re, P.E. Minot, M. Lass?gues and J.E. Surl?ve Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. (in press).
  8. S. Diridollou, M. Berson, V. Vabre, D. Black, B. Karlsson, F. Auriol, J.M. Gregoire, C. Yvon, L. Vaillant, Y. Gall and F. Patat, "An in vivo method for measuring the mechanical properties of the skin using ultrasound," Ultrasound in Medicine & Biology 24, 215-224 (1998).
    [CrossRef] [PubMed]
  9. V. Bagnoud and F. Salin, "1.1 Terawatt, kilohertz femtosecond laser," in Technical Digest CLEO '99 (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 71-72.
  10. E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberl? and C. Rulli?re, "Single-shot correlation system for longitudinal imaging in biological tissues," submitted to Opt. Commun.
  11. C.R. Simpson, M. Kohl, M. Essenpreis and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
    [CrossRef] [PubMed]

Opt. Express (1)

Other (10)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

A. Zumbusch, G.R. Holtom and X.S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

E. Abraham, E. Bordenave, N. Tsurumachi, G. Jonusauskas, J. Oberl?, C. Rulli?re and A. Mito, "Real-time two-dimensional imaging in scattering media by use of a femtosecond Cr4+:forterite laser," Opt. Lett. 25, 929-931 (2000).
[CrossRef]

G. Le Tolguenec, E. Lantz and F. Devaux, "Imaging through scattering media by parametric amplification of images: study of the resolution and the signal-to-noise ratio," Appl. Opt. 36, 8292-8297 (1997).
[CrossRef]

S. Bourquin, P. Seitz and R.P. Salath?, "Optical coherence tomography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001).
[CrossRef]

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl?, and C. Rulli?re, P.E. Minot, M. Lass?gues and J.E. Surl?ve Bazeille, "Wide-field optical coherence tomography: imaging of biological tissues," Appl. Opt. (in press).

S. Diridollou, M. Berson, V. Vabre, D. Black, B. Karlsson, F. Auriol, J.M. Gregoire, C. Yvon, L. Vaillant, Y. Gall and F. Patat, "An in vivo method for measuring the mechanical properties of the skin using ultrasound," Ultrasound in Medicine & Biology 24, 215-224 (1998).
[CrossRef] [PubMed]

V. Bagnoud and F. Salin, "1.1 Terawatt, kilohertz femtosecond laser," in Technical Digest CLEO '99 (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 71-72.

E. Bordenave, E. Abraham, G. Jonusauskas, J. Oberl? and C. Rulli?re, "Single-shot correlation system for longitudinal imaging in biological tissues," submitted to Opt. Commun.

C.R. Simpson, M. Kohl, M. Essenpreis and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (1448 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of the longitudinal imaging. Non-collinear interaction between the pump and probe pulses (frequency ω) in a nonlinear crystal for sum-frequency generation at frequency 2ω.

Fig. 2.
Fig. 2.

Experimental setup of the longitudinal imaging system. BS: 50/50 beam splitter; CL1: cylindrical lens; L2,L3: spherical lenses; DL: delay line.

Fig. 3.
Fig. 3.

(a) HE histology of a mouse ear. Image size: (0.93×0.7) mm2; (b) Longitudinal image of an ex vivo mouse ear. Image size (1.2×0.5) mm2. E: epidermis, sc: stratum corneum, D: dermis, cc: conjunctive capsule, C: cartilage.

Fig. 4.
Fig. 4.

(a) HE histology of human skin. Image size: (0.53×0.4) mm2; (b) Longitudinal image of an in vivo human skin in the region of the forearm. Image size: (1.5×0.6) mm2; (c) Linear depth profile of the longitudinal image along the line on (b). E: epidermis, sc: stratum corneum, D: dermis.

Fig. 5.
Fig. 5.

(1.5 MB) Movie of the skin of the volunteer, in the region of the forearm. Image size: (1×0.3) mm2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δz = 2 c n 0 ( λ ) sin ( Φ / 2 ) Δτ ,
Z max = 1 2 sin ( Φ / 2 ) A / n sample

Metrics