Abstract

We study the double excitation of surface modes at a metallic film that separates a uniaxial medium from an isotropic dielectric. We find that, for certain constitutive parameters of the structure, two normal modes can be associated to the film. It is found that the distance in the complex plane between the propagation constants of these modes can be considerably reduced by tuning conveniently film parameters, although the propagation constants are “reluctant” to coincide. We also show that a plane wave incident on the film from the crystal side can excite both modes simultaneously, without corrugating the surface or adding another layer. We obtain values of the film width for which the resonances appear at similar angles of incidence and show that these excitations are accompanied by an important increase of the power absorbed by the film and an enhancement of the fields at the two interfaces.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Heidelberg: Springer, 1988), Chap. 2, 4-39.
  2. Petit, R., editor, Electromagnetic theory of gratings , (Springer, Heidelberg, 1980).
    [CrossRef]
  3. A. D. Boardman, ed., Electromagnetic surface modes (John Wiley & Sons, New York, 1982).
  4. G. J. Kovacs, "Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers", J. Opt. Soc. Am 68 , 1325-1331 (1978).
    [CrossRef]
  5. G. J. Kovacs and G. D. Scott, "Attenuated total reflection angular spectra and associated resonant electromagnetic oscillations of a dielectric slab bounded by Ag films", App. Opt. 17 , 3314-3322 (1978).
    [CrossRef]
  6. G. J. Kovacs and G. D. Scott, "Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers", App. Opt. 17 , 3627-3635 (1978).
    [CrossRef]
  7. E. Burstein and F. de Martini, ed., Polaritons (Pergamon Press, London, 1974).
  8. G. Borstel and H. J. Falge, in Electromagnetic surface modes , A. D. Boardman, ed., (John Wiley & Sons, New York, 1982), Chap. 6, 219-248.
  9. R. F. Wallis, in Electromagnetic surface modes , A. D. Boardman, ed., (John Wiley & Sons, New York, 1982), Chap. 15, 575-631.
  10. M. E. Inchaussandague and R. A. Depine, "Polarization conversion from difraction gratings made of uniaxial crystals", Phys. Rev. E 54 , 2899-2911 (1996).
    [CrossRef]
  11. R. A. Depine and M. L. Gigli, "Conversion between polarization states at the sinusoidal boundary of a uniaxial crystal", Phys. Rev. B 49 , 8437-8445 (1994).
    [CrossRef]
  12. R. A. Depine and M. L. Gigli, "Excitation of surface plasmons and total absorption of light at the at boundary between a metal and a uniaxial crystal", Opt. Lett. 20 , 2243-2245 (1995).
    [CrossRef] [PubMed]
  13. R. A. Depine and M. L. Gigli, "Resonant excitation of surface modes at a single at uniaxial- metal interface", J. Opt. Soc. Am. A 14 , 510-519 (1997).
    [CrossRef]
  14. R. J. Crook, F. Yang and J. Sambles, "An investigation of p- and s- polarized long-range optical modes supported by a strongly absorbing normal uniaxial thin organic film", J. Mod. Opt. 40 , 243-253 (1993).
    [CrossRef]
  15. J. C. Quail, J. G. Rako, H. J. Simon and R. T. Deck, "Optical Second-Harmonic generation with Long-Range surface plasmons", Phys. Rev. Lett. 50 , 1987-1989 (1983).
    [CrossRef]
  16. D. Mihalache, D. M. Baboiu, M. Ciumac, L. Torner and J. Torres, "Hybrid surface plasmon polaritons guided by ultrathin metal films", Opt. Quantum Electron. 26 , 857-863 (1994).
    [CrossRef]
  17. D. Mihalache, D. M. Baboiu, M. Ciumac, L. Torner and J. Torres, "Guided waves in anisotropic antiguide structures", Opt. Comm. 108 , 239-242 (1994).
    [CrossRef]
  18. L. Torner, J. Torres and D. Mihalache, "New type of guided waves in birefringent media", IEEE Photonics Technol. Lett. 5 , 201-203 (1993).
    [CrossRef]
  19. J. M. Simon and V. A. Presa, "Surface electromagnetic waves at the interface with anisotropic media", J. Mod. Opt. 42 , 2201-2211 (1995).
    [CrossRef]
  20. J. E. Stewart and W. S. Gallaway, "Difraction anomalies in grating spectrophotometers", App. Opt. 1 , 421-429 (1962).
    [CrossRef]
  21. K. Utagawa, "Theory of difraction efficiency and anomalies of shallow gratings of finite conductivity", J. Opt. Soc. Am. 69 , 333-343 (1979).
    [CrossRef]
  22. H. C. Chen, Theory of electromagnetic waves: A coordinate free approach (Mc Graw-Hill, New York, 1983), Chap. 6, 219-262.

Other (22)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Heidelberg: Springer, 1988), Chap. 2, 4-39.

Petit, R., editor, Electromagnetic theory of gratings , (Springer, Heidelberg, 1980).
[CrossRef]

A. D. Boardman, ed., Electromagnetic surface modes (John Wiley & Sons, New York, 1982).

G. J. Kovacs, "Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers", J. Opt. Soc. Am 68 , 1325-1331 (1978).
[CrossRef]

G. J. Kovacs and G. D. Scott, "Attenuated total reflection angular spectra and associated resonant electromagnetic oscillations of a dielectric slab bounded by Ag films", App. Opt. 17 , 3314-3322 (1978).
[CrossRef]

G. J. Kovacs and G. D. Scott, "Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers", App. Opt. 17 , 3627-3635 (1978).
[CrossRef]

E. Burstein and F. de Martini, ed., Polaritons (Pergamon Press, London, 1974).

G. Borstel and H. J. Falge, in Electromagnetic surface modes , A. D. Boardman, ed., (John Wiley & Sons, New York, 1982), Chap. 6, 219-248.

R. F. Wallis, in Electromagnetic surface modes , A. D. Boardman, ed., (John Wiley & Sons, New York, 1982), Chap. 15, 575-631.

M. E. Inchaussandague and R. A. Depine, "Polarization conversion from difraction gratings made of uniaxial crystals", Phys. Rev. E 54 , 2899-2911 (1996).
[CrossRef]

R. A. Depine and M. L. Gigli, "Conversion between polarization states at the sinusoidal boundary of a uniaxial crystal", Phys. Rev. B 49 , 8437-8445 (1994).
[CrossRef]

R. A. Depine and M. L. Gigli, "Excitation of surface plasmons and total absorption of light at the at boundary between a metal and a uniaxial crystal", Opt. Lett. 20 , 2243-2245 (1995).
[CrossRef] [PubMed]

R. A. Depine and M. L. Gigli, "Resonant excitation of surface modes at a single at uniaxial- metal interface", J. Opt. Soc. Am. A 14 , 510-519 (1997).
[CrossRef]

R. J. Crook, F. Yang and J. Sambles, "An investigation of p- and s- polarized long-range optical modes supported by a strongly absorbing normal uniaxial thin organic film", J. Mod. Opt. 40 , 243-253 (1993).
[CrossRef]

J. C. Quail, J. G. Rako, H. J. Simon and R. T. Deck, "Optical Second-Harmonic generation with Long-Range surface plasmons", Phys. Rev. Lett. 50 , 1987-1989 (1983).
[CrossRef]

D. Mihalache, D. M. Baboiu, M. Ciumac, L. Torner and J. Torres, "Hybrid surface plasmon polaritons guided by ultrathin metal films", Opt. Quantum Electron. 26 , 857-863 (1994).
[CrossRef]

D. Mihalache, D. M. Baboiu, M. Ciumac, L. Torner and J. Torres, "Guided waves in anisotropic antiguide structures", Opt. Comm. 108 , 239-242 (1994).
[CrossRef]

L. Torner, J. Torres and D. Mihalache, "New type of guided waves in birefringent media", IEEE Photonics Technol. Lett. 5 , 201-203 (1993).
[CrossRef]

J. M. Simon and V. A. Presa, "Surface electromagnetic waves at the interface with anisotropic media", J. Mod. Opt. 42 , 2201-2211 (1995).
[CrossRef]

J. E. Stewart and W. S. Gallaway, "Difraction anomalies in grating spectrophotometers", App. Opt. 1 , 421-429 (1962).
[CrossRef]

K. Utagawa, "Theory of difraction efficiency and anomalies of shallow gratings of finite conductivity", J. Opt. Soc. Am. 69 , 333-343 (1979).
[CrossRef]

H. C. Chen, Theory of electromagnetic waves: A coordinate free approach (Mc Graw-Hill, New York, 1983), Chap. 6, 219-262.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Poles of the reflection matrix and zeroes of Roo in the complex plane α 0. The constitutive parameters of the structure are: = 2.51, = 1.78, μa = 1, φ = 20°, θc = 25°, l = -21.6+1.4i, μl = 1, μi = 1 and 0.03 < l/λ 0 < 0.3. Several values of i have been chosen: a) 1.94, b) 1.952, c) 1.953, d) 1.954 and e) 1.96.

Fig. 2.
Fig. 2.

Reflected power as a function of α 0/k 0 in the region of excitation of surface modes, for several values of the ratio l/λ 0, for the incidence of an ordinary wave. The other parameters are the same as in the previous figures.

Fig. 3.
Fig. 3.

Field enhancement factor on the crystal (y = 0) as a function of α 0/k 0 in Region II and of l/λ 0, for the incidence of an ordinary wave. The other parameters are the same as in the previous figures.

Fig. 4.
Fig. 4.

Field enhancement factor evaluated at y = -l, as a function of α 0/k 0 and of l/λ 0, when incidence of an ordinary wave. The other parameters are the same as in the previous figures.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ = μ a [ ( 1 c y 2 ) + c y 2 ] ( 1 c z 2 ) + c z 2 ,
E ± ( r ) = C o ± e ̂ o ± exp ( i k o ± · r ) + C e ± e ̂ e ± exp ( i k e ± · r ) ,
k o ± · k o ± = k 0 2 μ 2 , for ordinary waves ,
k e ± · ˜ · k e ± = k 0 2 μ 2 , for extraordinary waves .
E i ( r ) = [ A s z ̂ + A p ( k ̂ i × z ̂ ) ] exp ( i k i · r ) ,
E l = [ B s z ̂ + B p ( k ̂ l × z ̂ ) ] exp ( i k l · r ) + [ B s z ̂ + B p ( k ̂ l × z ̂ ) ] exp ( i k l · r ) ,
C o C e = R oo R oe R eo R ee C o + C e + .
det ( R ˜ 1 ) = 0 .
η ( α 0 ) exp ( 4 i γ l l ) + μ ( α 0 ) exp ( 2 i γ l l ) + ν ( α 0 ) = 0 ,
R oo = 0 if > ,
R ee = 0 if < .
F . E . ( y ) = E ( y ) E + ( y = 0 + ) ,

Metrics