Abstract

We compute the spectral distributions of the transmitted and reflected signals from an extended optically dense superradiant amplifier. We show that, if the amplifier length is in the neighborhood of an integer multiple of the resonance transition half-wavelength, the frequency shift in the spectral distributions of the transmitted and reflected signals are modified by the Dynamical Lorentz Shift. The broken spatial inversion symmetry, manifested through an asymmetrical distribution of the population difference with respect to a spatial inversion around the midpoint of the sample, is shown to be at the origin of this spectral asymmetry in these so-called asymmetrical transition domains.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. A. Lorentz, Theory of Electrons (Dover, New york, 2nd ed., 1952). Sections 117-124 and note 54.
  2. R. Friedberg, S. R. Hartmann, and J. T. Manassah, Frequency shifts in emission and absorption by resonant systems of two-level atoms, Phys. Rep. C 7, 101 (1973).
    [CrossRef]
  3. J.T. Manassah, Statistical quantum electrodynamics of resonant atoms, Phys. Rep. 101, 359(1983).
    [CrossRef]
  4. C. M. Bowden and J. P. Dowling, Near-dipole-dipole effects in dense media:generalized Maxwell-Bloch equations, Phys. Rev. A 47, 1247 (1993).
    [CrossRef] [PubMed]
  5. K. J. Boller, A. Imamoglu and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef] [PubMed]
  6. J. E. Field, K. H. Hahn and S. E. Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 67, 3062 (1991).
    [CrossRef] [PubMed]
  7. V. Malyshev and E. C. Jarque, Optical hysteresis and instabilities inside the polariton bandgap, J. Opt. Soc. Am. 12, 1868 (1995).
    [CrossRef]
  8. M. G. Benedict and E. D. Trifonov, Coherent reflection as superradiation from the boundary of a resonant medium, Phys. Rev. A 38, 2854 (1988).
    [CrossRef] [PubMed]
  9. M. G. Benedict, V. A. Malyshev, E. D. Trifonov, and I. Zaitsev, Reflection and transmission of ultrafast light pulses through a thin resonant medium: LFC, Phys. Rev. A. 43, 3854 (1991).
    [CrossRef]
  10. J. T. Manassah and B. Gross, Pulse reflectivitry at a dense dielectric-gas interface Opt. Commun. 131, 408 (1996).
    [CrossRef]
  11. R. Friedberg, S. R. Hartmann, and J. T. Manassah, Intensity-dependent spectral reflectivity of a dense gas-dielectric interface, Phys. Rev. 42, 5573 (1990).
    [CrossRef]
  12. R. Friedberg, S. R. Hartmann, and J. T. Manassah, Effects of the dynamic Lorentz shift on four-waveparametric interactions in a strongly driven two-level system, Phys. Rev. 42, 494 (1990).
    [CrossRef]
  13. R. Friedberg, S. R. Hartmann, and J. T. Manassah, Dynamical Lorentz shift revealed via nonlinear multiwave excitation, J. Phys. B: At. Mol. Opt. Phys. 24, 3981 (1991).
    [CrossRef]
  14. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, Linear and nonlinear optical measurements of the Lorentz local field, Phys. Rev. Lett. 67, 972 (1991).
    [CrossRef] [PubMed]
  15. J. T. Manassah and B. Gross, Superradiant amplification in an optically dense gas, Opt. Commun. (1997) in print.
    [CrossRef]
  16. A. Omont, Remarques sur la theorie de lelargissement Holtsmark des raies de resonance optique, C. R. Acad. Sci. (Paris) 262, 190 (1966).
  17. Y. A. Vdovin, and V. M. Galitskii, Dielectric constant of a gas of resonant atoms, Zh. Eksp. Teor. Fiz. 52, 1345 (1967). [JETP 25, 894 (1967)]

Other (17)

H. A. Lorentz, Theory of Electrons (Dover, New york, 2nd ed., 1952). Sections 117-124 and note 54.

R. Friedberg, S. R. Hartmann, and J. T. Manassah, Frequency shifts in emission and absorption by resonant systems of two-level atoms, Phys. Rep. C 7, 101 (1973).
[CrossRef]

J.T. Manassah, Statistical quantum electrodynamics of resonant atoms, Phys. Rep. 101, 359(1983).
[CrossRef]

C. M. Bowden and J. P. Dowling, Near-dipole-dipole effects in dense media:generalized Maxwell-Bloch equations, Phys. Rev. A 47, 1247 (1993).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn and S. E. Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 67, 3062 (1991).
[CrossRef] [PubMed]

V. Malyshev and E. C. Jarque, Optical hysteresis and instabilities inside the polariton bandgap, J. Opt. Soc. Am. 12, 1868 (1995).
[CrossRef]

M. G. Benedict and E. D. Trifonov, Coherent reflection as superradiation from the boundary of a resonant medium, Phys. Rev. A 38, 2854 (1988).
[CrossRef] [PubMed]

M. G. Benedict, V. A. Malyshev, E. D. Trifonov, and I. Zaitsev, Reflection and transmission of ultrafast light pulses through a thin resonant medium: LFC, Phys. Rev. A. 43, 3854 (1991).
[CrossRef]

J. T. Manassah and B. Gross, Pulse reflectivitry at a dense dielectric-gas interface Opt. Commun. 131, 408 (1996).
[CrossRef]

R. Friedberg, S. R. Hartmann, and J. T. Manassah, Intensity-dependent spectral reflectivity of a dense gas-dielectric interface, Phys. Rev. 42, 5573 (1990).
[CrossRef]

R. Friedberg, S. R. Hartmann, and J. T. Manassah, Effects of the dynamic Lorentz shift on four-waveparametric interactions in a strongly driven two-level system, Phys. Rev. 42, 494 (1990).
[CrossRef]

R. Friedberg, S. R. Hartmann, and J. T. Manassah, Dynamical Lorentz shift revealed via nonlinear multiwave excitation, J. Phys. B: At. Mol. Opt. Phys. 24, 3981 (1991).
[CrossRef]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, Linear and nonlinear optical measurements of the Lorentz local field, Phys. Rev. Lett. 67, 972 (1991).
[CrossRef] [PubMed]

J. T. Manassah and B. Gross, Superradiant amplification in an optically dense gas, Opt. Commun. (1997) in print.
[CrossRef]

A. Omont, Remarques sur la theorie de lelargissement Holtsmark des raies de resonance optique, C. R. Acad. Sci. (Paris) 262, 190 (1966).

Y. A. Vdovin, and V. M. Galitskii, Dielectric constant of a gas of resonant atoms, Zh. Eksp. Teor. Fiz. 52, 1345 (1967). [JETP 25, 894 (1967)]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The spatio-temporal dependence of the field and atomic variables are plotted for a typical value of L = (p + ¼)λ, T 1 = 30 ns , T2* = 300 ps , T 2 = 100 ps , τ = 30 ps.

Fig. 2.
Fig. 2.

The normalized field amplitude is plotted as a function of z / L , at the value of U corresponding to the location of the maximum of the transmitted field for different values of the transverse relaxation time. T 1 = 30 ns , T2* = 300 ps , τ = 30 ps, L = 5.25 λ

Fig. 3.
Fig. 3.

The normalized field amplitude is plotted as a function of z / L, at the value of U corresponding to the location of the maximum of the transmitted field for values of the sample length within the same symmetry sector.

Fig. 4.
Fig. 4.

The spatio-temporal dependence of the field and atomic variables are plotted for sample length within an asymmetrical transition region.

Fig. 5.
Fig. 5.

The time-integrated field energy flux inside the resonant medium, normalized to the initially stored energy density in the atomic system, is plotted as a function of z / L , for different values of the sample length within the asymmetrical transition region centered at L = 4.5 λ.

Fig. 6.
Fig. 6.

The difference in the values of the first moment of the transmitted and reflected fields spectral distributions, between the models including and excluding the Local Field Corrections, is plotted as a function of L / λ

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i p t = [ ( ω o ω c ) n ω L + ω D i γ 2 ] p n d 2 2 h E
i n t = 1 h [ p * E p E * ] + i γ 1 ( 1 n )
χ U = [ i [ ( Ω o Ω c ) n Ω L + Δ ] + γ 2 T 2 * ] χ + inϕ 2
n U = i [ χ * ϕ χ ϕ * ] + γ 1 T 2 * ( 1 n )
ϕ = d E T 2 * h ; χ = p d ; U = t T 2 * ; Ω o , c , L = ω o , c , L T 2 * ; Δ = ω D T 2 * .
2 ϕ z ¯ 2 + ϕ + 2 i Ω c ϕ U + 2 B χ Δ = 0
g ( Δ ) = 1 2 π exp ( Δ 2 2 )
ϕ ( z ¯ , U ) = ϕ in ( z ¯ = 0 , U ) exp ( i z ¯ ) + i B 0 L ¯ exp ( i z ¯ z ¯ ' ) χ z ¯ U Δ Δ d z ¯ '
ϕ in ( z ¯ = 0 , U ) = ϕ in 0 exp ( U 2 ( τ T 2 * ) 2 )
χ ( z ̅ , U = 0 , Δ ) = 0
n ( z ̅ , U = 0 , Δ ) = 1
r = η + n r η n r
ϕ refl ( z ¯ = 0 , U ) = ϕ ( z ¯ = 0 , U ) ϕ in ( z ¯ = 0 , U ) = + i B 0 L ¯ exp ( i z ¯ ' ) χ ( z ¯ ' , U , Δ ) Δ d z ¯ '
ϕ ( L 2 z , U ) = ϕ ( L 2 + z , U ) for L = ( p 1 4 ) λ
ϕ ( L 2 z , U ) = ϕ ( L 2 + z , U ) for L = ( p + 1 4 ) λ

Metrics