Abstract

A Fabry-Perot microcavity is used for the enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride. The amplitude of the photoluminescence is enhanced 4 times, while its linewidth is reduced 8 times with respect to the bulk hydrogenated amorphous silicon nitride. The transmittance, reflectance, and absorptance spectra of the microcavity were also measured and calculated. The calculated spectra agree well with the experimental ones.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific , Singapore, 1996).
  2. E. M. Purcell, " Spontaneous Emission Probabilities at Radio Frequencies, " Phys. Rev. 69, 681 (1946).
  3. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, "Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity," Phys. Rev. Lett. 59, 2955 (1987).
    [CrossRef] [PubMed]
  4. H. Yokoyama, S. D. Brorson, "Rate Equation Analysis of Microcavity Lasers," J. Appl. Phys. 66, 4801 (1989).
    [CrossRef]
  5. M. S. ünlü and S. Strite, "Resonant Cavity Enhanced Photonic Devices," J. Appl. Phys. 78, 607 (1995).
    [CrossRef]
  6. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities," Appl. Phys. Lett. 57, 2814 (1990).
    [CrossRef]
  7. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  8. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic Wire Laser," Phys. Rev. Lett. 75, 2678 (1995).
    [CrossRef] [PubMed]
  9. E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, "Resonant Cavity Light Emitting Diode," Appl. Phys. Lett. 60, 921 (1992).
    [CrossRef]
  10. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L.C. Kimerling, "Low-loss Polycrystalline Silicon Waveguides for Silicon Photonics," J. Appl. Phys. 80, 6120 (1996).
    [CrossRef]
  11. G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, "Amorphous Silicon Waveguides and Light Modulators for Integrated Photonics Realized by Low Temperature Plasma Enhanced Chemical Vapor Deposition," Opt. Lett. 21, 2002 (1996).
    [CrossRef] [PubMed]
  12. D. J. Lockwood, "Optical Properties of Porous Silicon," Solid State Commun. 92, 101 (1994).
    [CrossRef]
  13. T. Canham, "Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers," Appl. Phys. Lett. 57, 1046 (1990).
    [CrossRef]
  14. F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. T?rkoglu, M. G?re, V. N. Mikhailov, and O. A. Lavrova, "Visible Photoluminescence from SiOx Films Grown by Low Temperature Plasma Enhanced Chemical Vapor Deposition," Solid State Commun. 95, 443 (1995).
    [CrossRef]
  15. A. Aydinli, A. Serpeng?zel, and D. Vardar, "Visible Photoluminescence from Low Temperature Deposited Hydrogenated Amorphous Silicon Nitride," Solid State Commun. 98, 273 (1996).
    [CrossRef]
  16. L. Pavesi, R. Guardini, and C. Mazolleni, "Porous Silicon Resonant Cavity Light Emitting Diodes," Solid State Commun. 97, 1051 (1996).
    [CrossRef]
  17. B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, "Photoluminescence in Amorphous Si/SiOx Superlattices Fabricated by Magnetron Sputtering," Appl. Phys. Lett. 69 3149 (1996).
    [CrossRef]
  18. R. Fisher, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985). pp.159-187.
  19. M. H. Brodsky, "Quantum Well Model of the Hydrogenated Amorphous Silicon," Solid State Commun. 36, 55 (1980).
    [CrossRef]
  20. G. A. N. Connell, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer, Berlin, 1985). pp. 73-111.

Other

R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific , Singapore, 1996).

E. M. Purcell, " Spontaneous Emission Probabilities at Radio Frequencies, " Phys. Rev. 69, 681 (1946).

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, "Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity," Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef] [PubMed]

H. Yokoyama, S. D. Brorson, "Rate Equation Analysis of Microcavity Lasers," J. Appl. Phys. 66, 4801 (1989).
[CrossRef]

M. S. ünlü and S. Strite, "Resonant Cavity Enhanced Photonic Devices," J. Appl. Phys. 78, 607 (1995).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities," Appl. Phys. Lett. 57, 2814 (1990).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic Wire Laser," Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, "Resonant Cavity Light Emitting Diode," Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L.C. Kimerling, "Low-loss Polycrystalline Silicon Waveguides for Silicon Photonics," J. Appl. Phys. 80, 6120 (1996).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, "Amorphous Silicon Waveguides and Light Modulators for Integrated Photonics Realized by Low Temperature Plasma Enhanced Chemical Vapor Deposition," Opt. Lett. 21, 2002 (1996).
[CrossRef] [PubMed]

D. J. Lockwood, "Optical Properties of Porous Silicon," Solid State Commun. 92, 101 (1994).
[CrossRef]

T. Canham, "Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers," Appl. Phys. Lett. 57, 1046 (1990).
[CrossRef]

F. N. Timofeev, A. Aydinli, R. Ellialtioglu, K. T?rkoglu, M. G?re, V. N. Mikhailov, and O. A. Lavrova, "Visible Photoluminescence from SiOx Films Grown by Low Temperature Plasma Enhanced Chemical Vapor Deposition," Solid State Commun. 95, 443 (1995).
[CrossRef]

A. Aydinli, A. Serpeng?zel, and D. Vardar, "Visible Photoluminescence from Low Temperature Deposited Hydrogenated Amorphous Silicon Nitride," Solid State Commun. 98, 273 (1996).
[CrossRef]

L. Pavesi, R. Guardini, and C. Mazolleni, "Porous Silicon Resonant Cavity Light Emitting Diodes," Solid State Commun. 97, 1051 (1996).
[CrossRef]

B. T. Sullivan, D. J. Lockwood, H. J. Labbe, and Z.-H. Lu, "Photoluminescence in Amorphous Si/SiOx Superlattices Fabricated by Magnetron Sputtering," Appl. Phys. Lett. 69 3149 (1996).
[CrossRef]

R. Fisher, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985). pp.159-187.

M. H. Brodsky, "Quantum Well Model of the Hydrogenated Amorphous Silicon," Solid State Commun. 36, 55 (1980).
[CrossRef]

G. A. N. Connell, in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer, Berlin, 1985). pp. 73-111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimentally measured and theoretically calculated transmittance, reflectance, and absorptance spectra of the a-SiNx:H microcavity without the Au back mirror.

Fig. 2.
Fig. 2.

Reflectance and PL of the a-SiNx:H microcavity without the Au back mirror.

Fig. 3.
Fig. 3.

PL of the a-SiNx:H compared with the PL of GaAs.

Fig.4.
Fig.4.

Reflectance and PL of the a-SiNx:H microcavity with the Au back mirror.

Fig. 5.
Fig. 5.

PL of the a-SiNx:H microcavity with (X1) and without (X2) the Au back mirror.

Metrics