Abstract

Electroluminescence in the long-wavelength infrared (10-15 μm) spectrum region was observed from Sb-based type-II interband cascade quantum well structures. The device structure was grown by molecular beam epitaxy on a GaSb substrate and comprises 10 repeated periods of active regions separated by digitally graded multilayer injection regions. The devices have been operated at 300 K and 77 K, with an output optical power up to 50 nW. The emission wavelength, the longest observed in any compound semiconductor material at room temperature, results from tailoring the heterostructure, demonstrating a unique capability of this Sb-family type-II material system.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Z. Shi, M. Tacke, A. Lambrecht, and H. Bottner, "Mid-infrared lead salt multi-quantum-well diode lasers with 282 K operation," Appl. Phys. Lett. 66, 2537-2539 (1995).
    [CrossRef]
  2. Z. Feit, M. McDonald, R. J. Woods, V. Archambault, and P. Mak, "Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers," Appl. Phys. Lett. 68, 738-740 (1996).
    [CrossRef]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994); "Quantum cascade laser: An intersub-band semiconductor laser operating above liquid nitrogen temperature," Electron. Lett. 30, 865-866 (1994).
    [CrossRef] [PubMed]
  4. L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM J. Res. Dev. 14, 61-65 (1970).
    [CrossRef]
  5. R. F. Kazarinov and R. A. Suris, "Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice," Sov. Phys. Semicond. 5, 707-709 (1971).
  6. R. F. Kazarinov and R. A. Suris, "Electric and electromagnetic properties of semiconductors with a superlattice," Sov. Phys. Semicond. 6, 120-131 (1972).
  7. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, High power mid-infrared (l~5mm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett. 68, 3680-3682 (1996).
    [CrossRef]
  8. G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers, Science, 276, 773-776 (1997).
    [CrossRef] [PubMed]
  9. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Distributed feedback quantum cascade lasers, Appl. Phys. Lett. 70, 2670-2672 (1997).
    [CrossRef]
  10. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Long wavelength infrared (l~11mm) quantum cascade lasers, Appl. Phys. Lett. 69, 2810-2812 (1996).
    [CrossRef]
  11. R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells", Superlattices and Microstruct. 17, 77-83 (1995).
  12. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
    [CrossRef]
  13. R. Q. Yang and S. S. Pei, "Novel type-II quantum cascade lasers," J. Appl. Phys. 79, 8197-8203 (1996).
    [CrossRef]
  14. R. Q. Yang, C.-H. Lin, P. C. Chang, S. J. Murry, D. Zhang, S. S. Pei, S. R. Kurtz, S. N. G. Chu, and F. Ren, "Mid-IR interband cascade electroluminescence in type-II quantum well," Electron. Lett. 32, 1621-1622 (1996).
    [CrossRef]
  15. R. Q. Yang, C.-H. Lin, S. J. Murry, S. S. Pei, H. C. Liu, M. Buchanan, and E. Dupont, "Interband cascade light emitting diodes in the 5-8 mm spectrum region", Appl. Phys. Lett. 70, 2013-2015 (1997).
    [CrossRef]
  16. R. Q. Yang, C.-H. Lin, S. J. Murry, D. Zhang, S. S. Pei, E. Dupont, H. C. Liu and M. Buchanan, Long-wavelength IR interband cascade light emitting diodes, In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi and P. S. Zory, ed. Proc. SPIE 3001, 282-288 (1997).
    [CrossRef]
  17. C.-H. Lin, R. Q. Yang, D. Zhang, S. J. Murry, S. S. Pei, A. A. Allerman, and S. R. Kurtz, "Type-II interband quantum cascade laser at 3.8 mm", Electron. Lett. 33, 598-599 (1997).
    [CrossRef]
  18. C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, D. Zhang, C. -H. Lin, R. Q. Yang and S. S. Pei, Interband cascade laser emitting > 1 photon per injected electron, IEEE Photonics Technol. Lett. (in press, 1997).
    [CrossRef]
  19. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu and S. S. Pei, High power mid-IR interband cascade lasers based on type-II quantum wells, Appl. Phys. Lett. (in press, 1997).
    [CrossRef]
  20. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Mid-infrared field-tunable intersubband electroluminescence at room temperature by photon-assisted tunneling in coupled-quantum wells, Appl. Phys. Lett. 64, 1144-1146 (1994).
    [CrossRef]
  21. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Quantum cascade unipolar intersubband light emitting diodes in the 8-13 mm wavelength region, Appl. Phys. Lett. 66, 4-6 (1995).
    [CrossRef]
  22. G. Scamarcio, F. Capasso, J. Faist, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Tunable interminiband infrared emission in superlattice electron transport, Appl. Phys. Lett. 70, 1796-1798 (1997).
    [CrossRef]

Other (22)

Z. Shi, M. Tacke, A. Lambrecht, and H. Bottner, "Mid-infrared lead salt multi-quantum-well diode lasers with 282 K operation," Appl. Phys. Lett. 66, 2537-2539 (1995).
[CrossRef]

Z. Feit, M. McDonald, R. J. Woods, V. Archambault, and P. Mak, "Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers," Appl. Phys. Lett. 68, 738-740 (1996).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994); "Quantum cascade laser: An intersub-band semiconductor laser operating above liquid nitrogen temperature," Electron. Lett. 30, 865-866 (1994).
[CrossRef] [PubMed]

L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM J. Res. Dev. 14, 61-65 (1970).
[CrossRef]

R. F. Kazarinov and R. A. Suris, "Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice," Sov. Phys. Semicond. 5, 707-709 (1971).

R. F. Kazarinov and R. A. Suris, "Electric and electromagnetic properties of semiconductors with a superlattice," Sov. Phys. Semicond. 6, 120-131 (1972).

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, High power mid-infrared (l~5mm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers, Science, 276, 773-776 (1997).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Distributed feedback quantum cascade lasers, Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Long wavelength infrared (l~11mm) quantum cascade lasers, Appl. Phys. Lett. 69, 2810-2812 (1996).
[CrossRef]

R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells", Superlattices and Microstruct. 17, 77-83 (1995).

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

R. Q. Yang and S. S. Pei, "Novel type-II quantum cascade lasers," J. Appl. Phys. 79, 8197-8203 (1996).
[CrossRef]

R. Q. Yang, C.-H. Lin, P. C. Chang, S. J. Murry, D. Zhang, S. S. Pei, S. R. Kurtz, S. N. G. Chu, and F. Ren, "Mid-IR interband cascade electroluminescence in type-II quantum well," Electron. Lett. 32, 1621-1622 (1996).
[CrossRef]

R. Q. Yang, C.-H. Lin, S. J. Murry, S. S. Pei, H. C. Liu, M. Buchanan, and E. Dupont, "Interband cascade light emitting diodes in the 5-8 mm spectrum region", Appl. Phys. Lett. 70, 2013-2015 (1997).
[CrossRef]

R. Q. Yang, C.-H. Lin, S. J. Murry, D. Zhang, S. S. Pei, E. Dupont, H. C. Liu and M. Buchanan, Long-wavelength IR interband cascade light emitting diodes, In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, H. K. Choi and P. S. Zory, ed. Proc. SPIE 3001, 282-288 (1997).
[CrossRef]

C.-H. Lin, R. Q. Yang, D. Zhang, S. J. Murry, S. S. Pei, A. A. Allerman, and S. R. Kurtz, "Type-II interband quantum cascade laser at 3.8 mm", Electron. Lett. 33, 598-599 (1997).
[CrossRef]

C. L. Felix, W. W. Bewley, I. Vurgaftman, J. R. Meyer, D. Zhang, C. -H. Lin, R. Q. Yang and S. S. Pei, Interband cascade laser emitting > 1 photon per injected electron, IEEE Photonics Technol. Lett. (in press, 1997).
[CrossRef]

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu and S. S. Pei, High power mid-IR interband cascade lasers based on type-II quantum wells, Appl. Phys. Lett. (in press, 1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, S.-N. G. Chu, and A. Y. Cho, Mid-infrared field-tunable intersubband electroluminescence at room temperature by photon-assisted tunneling in coupled-quantum wells, Appl. Phys. Lett. 64, 1144-1146 (1994).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Quantum cascade unipolar intersubband light emitting diodes in the 8-13 mm wavelength region, Appl. Phys. Lett. 66, 4-6 (1995).
[CrossRef]

G. Scamarcio, F. Capasso, J. Faist, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Tunable interminiband infrared emission in superlattice electron transport, Appl. Phys. Lett. 70, 1796-1798 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Interband cascade structure based on InAs/GaInSb/AlSb type-II QWs under a forward bias.

Fig. 2
Fig. 2

Electroluminescence spectra of the type-II QC LED at 77K. Inset: the optical output power-current and the current-voltage characteristics.

Fig. 3
Fig. 3

Electroluminescence spectrum at 300K under 1A driving current.

Metrics