Abstract

The spectral properties of Pr3+ doped BaInGaGeSe chalcogenide glasses are reported. Absorption spectra, emission spectra, and lifetimes of the lower lying manifolds have been measured. Radiative transition rates are calculated and compared with measured experimental lifetimes. The strong mid-IR emission and spectral properties of this glass make this glass a strong candidate for lasers, amplifiers, and high brightness sources in the mid-IR.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
    [Crossref]
  2. J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
    [Crossref]
  3. S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
    [Crossref]
  4. S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
    [Crossref]
  5. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
    [Crossref]
  6. B. R. Judd, “Optical absorption intensities in rare earth ions,” Phys. Rev.,  127, 750–761 (1963).
    [Crossref]
  7. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.,  37, 511–520 (1963).
    [Crossref]
  8. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys.,  48,. 4774–4780 (1968).
    [Crossref]
  9. S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
    [Crossref]
  10. J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
    [Crossref]
  11. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
    [Crossref]

1997 (1)

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

1996 (2)

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

1995 (1)

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

1994 (4)

J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
[Crossref]

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

1968 (1)

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys.,  48,. 4774–4780 (1968).
[Crossref]

1963 (2)

B. R. Judd, “Optical absorption intensities in rare earth ions,” Phys. Rev.,  127, 750–761 (1963).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.,  37, 511–520 (1963).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Bowman, S. R.

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Bowman, S.R.

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
[Crossref]

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

Brocklesby, W.S.

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

Feldman, B. J.

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Feldman, B.J.

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
[Crossref]

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

Fujiura, K.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

Ganem, J.

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
[Crossref]

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Hanada, T.

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

Hayashi, T.

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

Hector, J.R.

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

Hewak, D.W.

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities in rare earth ions,” Phys. Rev.,  127, 750–761 (1963).
[Crossref]

Kanamori, T.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

Kueny, A. W.

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Miklos, R. E.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Moore, R.C.

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

Mori, A.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.,  37, 511–520 (1963).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Sanghera, J. S.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

Shaw,

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

Shaw, L.B.

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

Soga, N.

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

Sudo, S.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

Tanabe, S.

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

Wang, J.

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

Watanabe, M.

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

Weber, M. J.

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys.,  48,. 4774–4780 (1968).
[Crossref]

Appl. Phys. Lett. (1)

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers”, Appl. Phys. Lett.,  65, 13–15, (1994).
[Crossref]

IEEE J. Quantum Electron. (3)

S.R. Bowman, L.B. Shaw, B.J. Feldman, and J. Ganem, “A 7-μm praseodymium solid-state laser,” IEEE J. Quantum Electron.,  32, 646–649 (1994).
[Crossref]

S. R. Bowman, J. Ganem, B. J. Feldman, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron.,  30, 2925–2928 (1994).
[Crossref]

Shaw, S.R. Bowman, B.J. Feldman, and J. Ganem, “Radiative and multiphonon relaxation of the mid-IR transitions of Pr3+ in LaCl3,” IEEE J. Quantum Electron.,  32, 2166–2172 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J.R. Hector, D.W. Hewak, J. Wang, R.C. Moore, and W.S. Brocklesby, “Quantum efficiency measurements in oxygen containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photonics Technol. Lett.,  9, 443–445, (1997).
[Crossref]

J. Am. Ceram. Soc. (1)

S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3 μm optical amplifier,” J. Am. Ceram. Soc.,  78, 2917–2922 (1995).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys.,  37, 511–520 (1963).
[Crossref]

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys.,  48,. 4774–4780 (1968).
[Crossref]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol.,  14, 743–748, (1996).
[Crossref]

J. Lumin. (1)

J. Ganem, S.R. Bowman, and B.J. Feldman, “Excited state dynamics of Pr3+:LaCl3,” J. Lumin.,  58, 298–302, (1994).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities in rare earth ions,” Phys. Rev.,  127, 750–761 (1963).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Energy level diagram of Pr3+ ion showing IR emission wavelengths.

Figure 2.
Figure 2.

Room temperature absorption spectra of Pr3+ in BIGGSe. Raw spectra is shown at top in blue. Spectrum with Urbach and WAT absorption subtracted out is shown on the bottom in red.

Figure 3.
Figure 3.

Room temperature fluorescence spectra of Pr3+ in BIGGSe. Dips in spectra are associated with CO2, H-Se, and Ge-H absorption features

Figure 4.
Figure 4.

Room temperature fluorescence decay of the lower manifolds of Pr3+ in BIGGSe.

Tables (2)

Tables Icon

Table 1 Calculated radiative rates, branching ratios, and effective cross sections for Pr3+ in BIGGSe.

Tables Icon

Table 2 Calculated radiative rates, experimental lifetimes and calculated radiative quantum efficiencies for 0.1 wt. % Pr in BIGGSe.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

band k ( λ ) = 8 π 3 e 2 3 hc N λ ( 2 J + 1 ) n 2 [ n ( n 2 + 2 ) 2 9 S JJ ' ed + n 3 S JJ ' md ]
S JJ ' ed = t = 2,4,6 Ω t 4 f n [ S , L ] J U t 4 f n [ S L ] J 2
Ω 2 = 15.7 × 10 20
Ω 4 = 4.0 × 10 20
Ω 6 = 12.7 × 10 20
A JJ ' ed = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ̅ 3 n ( n 2 + 2 ) 2 9 S JJ ' ed
A JJ ' md = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ̅ 3 n 3 S JJ ' md
A J = J A JJ '
β JJ ' = A JJ ' A J
= λ 2 8 π n 2 c A JJ ' .
1 τ = 1 τ rad + 1 τ nr
η = τ τ rad .

Metrics