Abstract

We report on a spectroscopic analysis of ErCl3 and 1% Er3+:YCl3 to determine their potential as possible laser sources at 3.5 and 4.5 μm. Concentration quenching of the low lying excited states is reported to be surprisingly very weak in this system. Although some shortening of the lifetimes is measured in the fully concentrated system, they retain lifetimes that are of order several milliseconds or more. A Judd-Ofelt analysis is performed and the projected gains for the 3.5 and 4.5 μm transitions are calculated. Successful growth techniques of erbium doped chlorides are also described.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. R. Bowman, J. Ganem, B.J. Feldman, and A.W. Kueny, Infrared laser characteristics of praseodymium-doped lanthanum trichloride, IEEE J. Quantum Electron. 30, 2925 - 2928, (1994).
    [CrossRef]
  2. S. R. Bowman, L. B. Shaw, B.J. Feldman, and J. Ganem, A 7-mm Praseodymium-Based Solid State Laser, IEEE J. Quantum Electron., 32, 646 - 649 (1996).
    [CrossRef]
  3. A. Riseberg and M. J. Weber, Relaxation phenomena in rare earth luminescence, in Progress in Optics. New York: North Holland, 14 (1976).
  4. W. Moos, Spectroscopic relaxation processes of rare earth ions in crystals, J. Lumin. 1, 106-112, (1968).
    [CrossRef]
  5. J. F. Pinto, G. H. Rosenblatt, L. Esterowitz, Continuous-wave laser action in Er 3+ :YLF at 3.41 mm, Electron. Lett., 30, 1596-1598 (1994).
    [CrossRef]
  6. A. A. Kaminskii, Izv. Akad. Nauk SSSR, Ser. Fiz., 45, 348 (1981).
  7. H. Tobben, Room Temperature CW Fiber Laser at 3.5 mm in Er 3+ Doped ZBLAN Glass, Electron. Lett., 28, 1361-1362 (1992).
    [CrossRef]
  8. B. R. Judd, Optical absorption intensities in rare earth ions, Phys Rev. 127,750- 751 (1963).
    [CrossRef]
  9. G. S. Ofelt, Intensities of crystal spectra of rare earth ions, J. Chem. Phys. 37, 511-520 (1963).
    [CrossRef]
  10. M.J. Weber, Probabilities for Radiative and Nonradiative Decay of Er 3+ in LaF3, Phys. Rev. 157 (1967).
    [CrossRef]
  11. B. P. Sobolev, in Growth of Crystals, edited by E. I. Givargizov and S. A. Grinberg, (Plenum, New York, 1992), vol. 18, pp.197-211.
    [CrossRef]
  12. Pollnau, W. Lthy, and H. P. Weber, Influence of Normal and Inverse Upconversion Processes on the Continuous Wave Operation of the Er 3+ 3 mm Crystal Laser, in Advanced Solid State Lasers, Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p 163-167.
  13. Bogdanov, W.E.K. Gibbs, D.J. Booth, J.S. Javornickzky, P.J. Newman, D.R MacFarlane, Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm, Optics Commun. 132, 73-76, (1996).
    [CrossRef]
  14. L.B. Shaw, D. Schaasma, J. Moon, B. Harbison, J. Sanghera, I. D. Aggarwal, Evaluation of the IR Transitions in Rare Earth Doped Chalcogenide Glasses, in Conference on Lasers and Electro-Optics, Vol 11 of 1997 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1997), p.255.

Other (14)

S. R. Bowman, J. Ganem, B.J. Feldman, and A.W. Kueny, Infrared laser characteristics of praseodymium-doped lanthanum trichloride, IEEE J. Quantum Electron. 30, 2925 - 2928, (1994).
[CrossRef]

S. R. Bowman, L. B. Shaw, B.J. Feldman, and J. Ganem, A 7-mm Praseodymium-Based Solid State Laser, IEEE J. Quantum Electron., 32, 646 - 649 (1996).
[CrossRef]

A. Riseberg and M. J. Weber, Relaxation phenomena in rare earth luminescence, in Progress in Optics. New York: North Holland, 14 (1976).

W. Moos, Spectroscopic relaxation processes of rare earth ions in crystals, J. Lumin. 1, 106-112, (1968).
[CrossRef]

J. F. Pinto, G. H. Rosenblatt, L. Esterowitz, Continuous-wave laser action in Er 3+ :YLF at 3.41 mm, Electron. Lett., 30, 1596-1598 (1994).
[CrossRef]

A. A. Kaminskii, Izv. Akad. Nauk SSSR, Ser. Fiz., 45, 348 (1981).

H. Tobben, Room Temperature CW Fiber Laser at 3.5 mm in Er 3+ Doped ZBLAN Glass, Electron. Lett., 28, 1361-1362 (1992).
[CrossRef]

B. R. Judd, Optical absorption intensities in rare earth ions, Phys Rev. 127,750- 751 (1963).
[CrossRef]

G. S. Ofelt, Intensities of crystal spectra of rare earth ions, J. Chem. Phys. 37, 511-520 (1963).
[CrossRef]

M.J. Weber, Probabilities for Radiative and Nonradiative Decay of Er 3+ in LaF3, Phys. Rev. 157 (1967).
[CrossRef]

B. P. Sobolev, in Growth of Crystals, edited by E. I. Givargizov and S. A. Grinberg, (Plenum, New York, 1992), vol. 18, pp.197-211.
[CrossRef]

Pollnau, W. Lthy, and H. P. Weber, Influence of Normal and Inverse Upconversion Processes on the Continuous Wave Operation of the Er 3+ 3 mm Crystal Laser, in Advanced Solid State Lasers, Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p 163-167.

Bogdanov, W.E.K. Gibbs, D.J. Booth, J.S. Javornickzky, P.J. Newman, D.R MacFarlane, Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm, Optics Commun. 132, 73-76, (1996).
[CrossRef]

L.B. Shaw, D. Schaasma, J. Moon, B. Harbison, J. Sanghera, I. D. Aggarwal, Evaluation of the IR Transitions in Rare Earth Doped Chalcogenide Glasses, in Conference on Lasers and Electro-Optics, Vol 11 of 1997 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1997), p.255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Energy level diagram for Er3+ showing the pump transitions in blue and the pertinent laser transitions in red.

Figure 2:
Figure 2:

1% Er3+:YCl3 and ErCl3 single crystals.

Figure 3.
Figure 3.

Room temperature unpolarized absorption spectra of ErCl3.

Figure 4:
Figure 4:

Fluorescence spectra of ErCl3. Shown are the 4F9/24I9/2 transition pumped at 660 nm (blue) and the 4I9/24I11/2 transition pumped at 800 nm (red).

Tables (5)

Tables Icon

Table 1 Measured fluorescence lifetimes.

Tables Icon

Table 2 Judd-Ofelt parameters.

Tables Icon

Table 3 Calculated electric and magnetic dipole radiative rates, branching ratios, and effective emission cross sections for ErCl3.

Tables Icon

Table 4 Calculated electric and magnetic dipole radiative rates, branching ratios, and effective emission cross sections for 1% Er3+:YCl3.

Tables Icon

Table 5 Calculated fluorescence lifetimes and measured fluorescence lifetimes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

band k ( λ ) = 8 π 3 e 2 3 hc N λ ̅ ( 2 J + 1 ) n 2 [ n ( n 2 + 2 ) 2 9 S JJ ' ed + n 3 S JJ ' md ]
S JJ ' ed = t = 2,4,6 Ω t 4 f n [ S , L ] J U t 4 f n [ S ' L ' ] J ' 2
A JJ ' = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ¯ 3 [ n ( n 2 + 2 ) 2 9 S JJ ' ed + n 3 S JJ ' md ]
= λ 2 8 π n 2 c A JJ '
γ = Δ ν eff ( Iατ )

Metrics