Abstract

Gallium lanthanum sulphide based glasses are proposed as high quality hosts for rare-earth doped, mid-infrared fibre lasers, that would offer compact and rugged sources for gas sensing, atmospheric transmission, and medical applications. The infrared emission spectroscopy of erbium doped glasses and fibres shows the potential of this glass host for the above applications. Mid-infrared transitions at 2.0, 2.75, 3.6, and 4.5μm have been detected and characterized.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, E. J. Tarbox, Gallium lanthanum sulphide optical fibre for active and passive applications, Electron. Lett. 32, 384-385 (1996)
    [CrossRef]
  2. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, I. D. Aggarwal, Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibre, J. Lightwave Technol. 14, 743-748 (1996)
    [CrossRef]
  3. P. Urquhart, Review of rare earth doped fibre lasers and amplifiers, IEE Proceedings 135, Pt. J, No. 6, 385-407 (1988)
    [CrossRef]
  4. C.C. Ye, D.W. Hewak, M. Hempstead, B.N. Samson, and D.N. Payne, Spectral properties of Er3+-doped gallium lanthanum sulphide glass, J. Non-Cryst. Solids 208, 56-63 (1996)
    [CrossRef]
  5. B. F. Aull, and H. P. Jenssen, Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quntum Elect. QE-18, 925-930 (1982)
    [CrossRef]
  6. H. Tbben, Room temperature cw fibre laser at 3.5mm in Er 3+-doped ZBLAN glass, Electron. Lett. 28, 1361-1362 (1992)
  7. T. Schweizer, B.N. Samson, R. C. Moore, D.W. Hewak, and D.N. Payne, Rare-earth doped chalcogenide glass laser, Electron. Lett. 33, 414-416 (1997)
    [CrossRef]
  8. L.B. Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, I. Aggarwal, Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses, in Conference on Lasers and Electrooptics, Volume 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, DC, 1997), p. 255.

Other

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, E. J. Tarbox, Gallium lanthanum sulphide optical fibre for active and passive applications, Electron. Lett. 32, 384-385 (1996)
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, I. D. Aggarwal, Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibre, J. Lightwave Technol. 14, 743-748 (1996)
[CrossRef]

P. Urquhart, Review of rare earth doped fibre lasers and amplifiers, IEE Proceedings 135, Pt. J, No. 6, 385-407 (1988)
[CrossRef]

C.C. Ye, D.W. Hewak, M. Hempstead, B.N. Samson, and D.N. Payne, Spectral properties of Er3+-doped gallium lanthanum sulphide glass, J. Non-Cryst. Solids 208, 56-63 (1996)
[CrossRef]

B. F. Aull, and H. P. Jenssen, Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections, IEEE J. Quntum Elect. QE-18, 925-930 (1982)
[CrossRef]

H. Tbben, Room temperature cw fibre laser at 3.5mm in Er 3+-doped ZBLAN glass, Electron. Lett. 28, 1361-1362 (1992)

T. Schweizer, B.N. Samson, R. C. Moore, D.W. Hewak, and D.N. Payne, Rare-earth doped chalcogenide glass laser, Electron. Lett. 33, 414-416 (1997)
[CrossRef]

L.B. Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, I. Aggarwal, Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses, in Conference on Lasers and Electrooptics, Volume 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, DC, 1997), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A photograph of GLS glass; a 220g ingot, some polished rods (110mm × 8mm), and a drawn ‘cane’.

Fig. 2
Fig. 2

Cross section of a double clad uncoated GLSO fibre.

Fig. 3
Fig. 3

Absorption spectrum of 9.7mol% Er3+ doped GLS glass and Er3+ energy levels indicating the infrared transitions

Fig. 4
Fig. 4

Fluorescence spectra of 1.57mol% Er3+ doped GLS glasses and fibres

Tables (1)

Tables Icon

Table 1 Radiative properties of mid-infrared transitions in Er3+ doped GLS glass (Aed, Amd, Tr, and Tm from Ref. 4)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ em ( λ ) = A λ 5 I ( λ ) 8 π n 2 c λI ( λ )

Metrics