Abstract

We analyzed the effect of two-photon absorption (TPA) on distributed Bragg reflectors and applied our results to the study of saturable Bragg reflectors in mode-locked Cr:LiSAF laser. We showed that in agreement with experimental results, TPA is greatly reduced compared to bulk materials. Hence, Bragg reflectors can be successfully used in a variety of low-loss laser components.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland
J. Opt. Soc. Am. B 17(6) 919-926 (2000)

Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration

Aude-Reine Bellancourt, Yohan Barbarin, Deran J. H. C. Maas, Mohammad Shafiei, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller
Opt. Express 17(12) 9704-9711 (2009)

Large-area broadband saturable Bragg reflectors by use of oxidized AlAs

S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen
Opt. Lett. 29(21) 2551-2553 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. S. Wherrett , “ Scaling rules for multiphoton interband absorption in semiconductors ,” J. Opt. Soc. Am. B   1 , 67 – 72 ( 1984 ).
    [Crossref]
  2. J. B. Khurgin , “ Nonlinear response of the semiconductor quantum-confined structures near and below the middle of the band gap ,” J. Opt. Soc. Am. B   11 , 624 – 631 ( 1994 ).
    [Crossref]
  3. A. T. Obeidat and J. B. Khurgin , “ Excitonic enhancement of two-photon absorption in semiconductor quantum-well structures ,” J. Opt. Soc. Am. B   12 , 1222 – 1227 ( 1995 ).
    [Crossref]
  4. S. Hunter , F. Kiamilev , S. Esener , D. Parthenopoulos , and P. Rentzepis , “ Potentials of two-photon based 3D optical memories for high performance computing ,” Appl. Opt.   29 , 2058 – 2066 ( 1990 ).
    [Crossref] [PubMed]
  5. A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
    [Crossref]
  6. S. Tsuda , W. H. Knox , E. A. de Souza , W. Y. Jan , and J. E. Cunningham , “ Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers ,” Opt. Lett.   20 , 1406 ( 1995 ).
    [Crossref] [PubMed]
  7. F. Pedrotti and L. Pedrotti , Introduction To Optics , ( Printice Hall, New Jersey , 1993 ), p. 391 .
  8. A. Kaplan , “ Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations ,” Opt. Lett.   8 , 560 ( 1983 ).
    [Crossref] [PubMed]

1995 (2)

1994 (1)

1992 (1)

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

1990 (1)

1984 (1)

1983 (1)

Aitchison, J. S.

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

Cunningham, J. E.

Esener, S.

Hunter, S.

Jan, W. Y.

Kaplan, A.

Khurgin, J. B.

Kiamilev, F.

Knox, W. H.

Obeidat, A. T.

Parthenopoulos, D.

Pedrotti, F.

F. Pedrotti and L. Pedrotti , Introduction To Optics , ( Printice Hall, New Jersey , 1993 ), p. 391 .

Pedrotti, L.

F. Pedrotti and L. Pedrotti , Introduction To Optics , ( Printice Hall, New Jersey , 1993 ), p. 391 .

Rentzepis, P.

Souza, E. A. de

Stegeman, G. I.

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

Tsuda, S.

Villeneuve, A.

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

Wherrett, B. S.

Wigley, P. G.

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

Yang, C. C.

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Villeneuve , C. C. Yang , P. G. Wigley , G. I. Stegeman , and J. S. Aitchison , “ Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap ,” Appl. Phys. Lett.   62 , 147 – 149 ( 1992 ).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Lett. (2)

Other (1)

F. Pedrotti and L. Pedrotti , Introduction To Optics , ( Printice Hall, New Jersey , 1993 ), p. 391 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The total optical energy density inside the DBR normalized by the incident energy density. The device structure is overlaid on the curve. The total length of the device is 3.432 μm.

Fig. 2
Fig. 2

Reflectivity of the DBR vs. the input intensity in comparison with a similar piece of bulk GaAs in front of an ideal reflector. The operating point of 5 GW/cm2 is shown.

Fig. 3
Fig. 3

Reflectivity of the DBR as a function of the absorption length which is defined as 1/(βI 0) where I 0 is the incident intensity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( E j + 1 c B j + 1 ) = i 2 ( e 1 2 α i d e 1 2 α r d 1 n ( e 1 2 α i d + e 1 2 α r d ) n ( e 1 2 α i d + e 1 2 α r d ) e 1 2 α i d e 1 2 α r d ) ( E j c B j )
α i = 1 l a ( I i + 2 I r )
α r = 1 l a ( 2 I i + I r ) ,

Metrics