Abstract

Color Doppler optical coherence tomography (CDOCT) is a noninvasive technique for simultaneous high spatial resolution (~20 μm) imaging and high velocity resolution (~500 μm/s) imaging flowmetry in living tissues. In this paper, we demonstrate a reconstruction method which overcomes fundamental limitations on Doppler flow mapping associated with both high- and low-speed imaging. This algorithm is successful in retaining the high velocity resolution of CDOCT while eliminating motion artifact caused by slow image acquisition in samples which exhibit repetitive motion. We demonstrate reconstruction of blood flow throughout a beating Xenopus laevis heart and surrounding vasculature using gated CDOCT reconstruction.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
    [CrossRef]
  5. J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
    [CrossRef] [PubMed]
  6. A. M., Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, V. A. Kamensky, "Biomedical diagnostics using optical coherence tomography," OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds. (Optical Society of America, Washington, DC 1996) 2, 196-199.
  7. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  8. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-64 (1996).
    [CrossRef] [PubMed]
  9. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  10. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
    [CrossRef] [PubMed]
  11. P. D. Nieuwkoop, and J. Faber, Normal Table of Xenopus Laevis (Daudin) (Garland, New York, 1994).
  12. J. M. W. Slack, "Xenopus and other amphibians" in Embryos: color atlas of development, J. Bard, ed. (Wolfe, Singapore 1994).
  13. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
    [CrossRef]
  14. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
    [CrossRef] [PubMed]
  15. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, "Optical coherence tomography for biodiagnostics," Opt. Photon. News 8, 41-47 (1997).
    [CrossRef]
  16. M. D. Kulkarni, and J. A. Izatt, Spectroscopic optical coherence tomography, Conference on Lasers and Electro-Optics, 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 1996) 9, 59-60.
  17. F. W. Kremkau, "Principles and pitfalls of real-time color flow imaging," in Vascular Diagnosis, 4 th ed., E. F. Bernstein, ed. (Mosby-Year Book, Inc., Missouri, 1993).

Other

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864-1866 (1993).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
[CrossRef]

J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology 191, 93-98 (1995).
[CrossRef] [PubMed]

A. M., Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, V. A. Kamensky, "Biomedical diagnostics using optical coherence tomography," OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds. (Optical Society of America, Washington, DC 1996) 2, 196-199.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-64 (1996).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney, and J. G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
[CrossRef] [PubMed]

P. D. Nieuwkoop, and J. Faber, Normal Table of Xenopus Laevis (Daudin) (Garland, New York, 1994).

J. M. W. Slack, "Xenopus and other amphibians" in Embryos: color atlas of development, J. Bard, ed. (Wolfe, Singapore 1994).

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt. Lett. 22, 1439-1441 (1997).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton, and A. J. Welch, "Optical coherence tomography for biodiagnostics," Opt. Photon. News 8, 41-47 (1997).
[CrossRef]

M. D. Kulkarni, and J. A. Izatt, Spectroscopic optical coherence tomography, Conference on Lasers and Electro-Optics, 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 1996) 9, 59-60.

F. W. Kremkau, "Principles and pitfalls of real-time color flow imaging," in Vascular Diagnosis, 4 th ed., E. F. Bernstein, ed. (Mosby-Year Book, Inc., Missouri, 1993).

Supplementary Material (2)

» Media 1: MOV (252 KB)     
» Media 2: MOV (253 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of color Doppler OCT imaging system. I, in-phase; Q, quadrature; A/D, analog-to-digital converter. The sample probe beam is incident on the ventral surface of the specimen.

Fig. 2.
Fig. 2.

Sagittal optical section of Xenopus heart through ventral surface of body. The abscissa is the equivalent time of acquisition for the image. The spatial dimensions are 2.0 mm across by 1.07 mm deep (assuming a mean index of refraction=1.4). Whereas some structures are visible with high resolution, image clarity is drastically reduced in moving structures (i.e., heart and diaphragm). White bars indicate the region magnified in Fig. 3. st, stomach; l, liver; p, pericardium; bv, branched vessels.

Fig. 3.
Fig. 3.

A-scans extracted from Fig. 2 between the vertical white bars within the ventricle. One period of the cardiac cycle required exactly five (T=5.00±0.01) A-scans.

Fig. 4.
Fig. 4.

Reconstruction of a beating Xenopus heart using the frame gating technique, played back at 0.75 times real-time. For optimal viewing of movie, set viewer to automatic loop playback mode. Doppler processing is restricted to region indicated by rectangle. v, ventricle; a, atrium; ta, truncus arteriosus; p, pericardium; bv, branched vessels; d, diaphragm. [Media 1]

Fig. 5.
Fig. 5.

CDOCT reconstruction of entire Xenopus heart, played back at 0.75 times real-time. For optimal viewing of movie, set viewer to automatic loop playback mode.. Flow in the heart is masked by motion of the ventricle and turbulent flow within the ventricle, similar to clutter in color Doppler ultrasound imaging. [Media 2]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i d ˜ ( t ) = A ( t ) cos [ 2 π ( f r f s ) t + ϕ ( t ) ] ,
i d ( t ) = A ( t ) exp [ j { 2 π f s t + ϕ ( t ) } ] .
V s = f s λ 0 2 n t cos θ ,
V s min = λ 0 2 n t cos θ · 1 N t s .
V s min = λ 0 2 n t cos θ · L v r N D .
V s min = λ 0 2 n t cos θ · K L R f N ρ .

Metrics