Abstract

Multiframe blind deconvolution - the process of restoring resolution to blurred imagery when the precise form of the blurs is unknown - is discussed as an estimation-theoretic method for improving the resolving power of ground-based telescopes used for space surveillance. The imaging problem is posed in an estimation-theoretic framework whereby the object’s incoherent scattering function is estimated through the simultaneous identification and correction of the distorting effects of atmospheric turbulence. An iterative method derived via the expectation-maximization (EM) procedure is reviewed, and results obtained from telescope imagery of the Hubble Space Telescope are presented.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects

Charles L. Matson, Kathy Borelli, Stuart Jefferies, Charles C. Beckner, Jr., E. Keith Hege, and Michael Lloyd-Hart
Appl. Opt. 48(1) A75-A92 (2009)

High-resolution speckle imaging through strong atmospheric turbulence

Douglas A. Hope, Stuart M. Jefferies, Michael Hart, and James G. Nagy
Opt. Express 24(11) 12116-12129 (2016)

Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery

David G. Sheppard, Bobby R. Hunt, and Michael W. Marcellin
J. Opt. Soc. Am. A 15(4) 978-992 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press, Inc. (1996).
  2. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys.,  6, 85 (1970).
  3. K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J.,  193, L45–L48 (1974).
    [Crossref]
  4. A. W. Lohmann, G. Weigelt, and B. Wirnitzer, “Speckle masking in astronomy: triple correlation theory and applications,” Appl. Opt. ,  22, 4028–4037 (1983).
    [Crossref] [PubMed]
  5. T. J. Schulz, “Multi-frame blind deconvolution of astronomical images”, J. Opt. Soc. Am. A ,  10, 1064–1073 (1993).
    [Crossref]
  6. Strictly speaking, because of image inversion and magnification an imaging system is never spatially invariant; however, if one views the input signal as the inverted and magnified object, many imaging systems are then well-modeled as spatially invariant.
  7. D. L. Snyder, A. M. Hammoud, and R. L. White, “Image recovery from data acquired with a charge-coupled-device camera,” J. Opt. Soc. Am. A ,  10, 1014–1023 (1993).
    [Crossref] [PubMed]
  8. D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White, “Compensation for readout noise in CCD images,” J. Opt. Soc. Am. A ,  12, 272–283 (1985).
    [Crossref]
  9. G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its application”, Opt. Lett. ,  13, 547–549 (1988).
    [Crossref] [PubMed]
  10. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A ,  9, 1508–1514 (1992).
    [Crossref]
  11. S. M. Jefferies and J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution”, Astrophys. J.,  63, 862–874 (1993).
    [Crossref]
  12. E. Thiebaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A ,  12, 485–492 (1995).
    [Crossref]
  13. T. J. Cornwell, “Where have we been, where are we now, where are we going?”, in The Restoration of HST Images and Spectra II, B. Hanisch and R. L. White, editors, (Space Telescope Science Institute, Baltimore, MD, 1993) pp. 369–372.
  14. T. J. Schulz, “Movie of processed Hubble Space Telescope imagery,” http://www.ee.mtu.edu/faculty/schulz/mpeg/hst.mpeg
  15. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations using phase diversity,” J. Opt. Soc. Am. A ,  9, 1072–1085 (1992).
    [Crossref]

1995 (1)

1993 (3)

1992 (2)

1988 (1)

1985 (1)

1983 (1)

1974 (1)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J.,  193, L45–L48 (1974).
[Crossref]

1970 (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys.,  6, 85 (1970).

Ayers, G. R.

Christou, J. C.

S. M. Jefferies and J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution”, Astrophys. J.,  63, 862–874 (1993).
[Crossref]

Conan, J.-M.

Cornwell, T. J.

T. J. Cornwell, “Where have we been, where are we now, where are we going?”, in The Restoration of HST Images and Spectra II, B. Hanisch and R. L. White, editors, (Space Telescope Science Institute, Baltimore, MD, 1993) pp. 369–372.

Dainty, J. C.

Faisal, M.

Fienup, J. R.

Hammoud, A. M.

Helstrom, C. W.

Jefferies, S. M.

S. M. Jefferies and J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution”, Astrophys. J.,  63, 862–874 (1993).
[Crossref]

Knox, K. T.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J.,  193, L45–L48 (1974).
[Crossref]

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys.,  6, 85 (1970).

Lane, R. G.

Lanterman, A. D.

Lohmann, A. W.

Paxman, R. G.

Roggemann, M. C.

M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press, Inc. (1996).

Schulz, T. J.

Snyder, D. L.

Thiebaut, E.

Thompson, B. J.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J.,  193, L45–L48 (1974).
[Crossref]

Weigelt, G.

Welsh, B.

M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press, Inc. (1996).

White, R. L.

Wirnitzer, B.

Appl. Opt. (1)

Astron. Astrophys. (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” Astron. Astrophys.,  6, 85 (1970).

Astrophys. J. (2)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short exposure images,” Astrophys. J.,  193, L45–L48 (1974).
[Crossref]

S. M. Jefferies and J. C. Christou, “Restoration of astronomical images by iterative blind deconvolution”, Astrophys. J.,  63, 862–874 (1993).
[Crossref]

J. Opt. Soc. Am. A (6)

Opt. Lett. (1)

Other (4)

M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press, Inc. (1996).

Strictly speaking, because of image inversion and magnification an imaging system is never spatially invariant; however, if one views the input signal as the inverted and magnified object, many imaging systems are then well-modeled as spatially invariant.

T. J. Cornwell, “Where have we been, where are we now, where are we going?”, in The Restoration of HST Images and Spectra II, B. Hanisch and R. L. White, editors, (Space Telescope Science Institute, Baltimore, MD, 1993) pp. 369–372.

T. J. Schulz, “Movie of processed Hubble Space Telescope imagery,” http://www.ee.mtu.edu/faculty/schulz/mpeg/hst.mpeg

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Figure 1:
Figure 1:

Four short-exposure images of the Hubble Space Telescope as acquired by the 1.6 m AMOS telescope.

Figure 2:
Figure 2:

Four restored images of the Hubble Space Telescope.

Tables (1)

Tables Icon

Table 1: Telescope and imaging system parameters for the AMOS imagery of the Hubble Space Telescope.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

h ( y ; θ t ) = A ( u ) exp { j [ θ t ( u ) 2 π λ d o u · y ] } du 2 ,
i ( y ; θ t , o ) = h ( y x ; θ t ) o ( x ) dx
= h ( y ; θ t ) * o ( y ) ,
d k [ n ] = N k [ n ] + M k [ n ] + g k [ n ] + b [ n ] ,
E ( N k [ n ] ) = I k [ n ]
= γ [ n ] y n t k t k + T i ( y ; θ t , o ) dydt ,
I k [ n ] γ [ n ] T y i k ( y n ; θ t k , o ) ,
i k ( y n ; θ t k , o ) m h ( y n x m ; θ t k ) o ( x m ) Δ x 2 ,
h ( y n ; θ t k ) l A ( u l ) exp { j [ θ t k ( u l ) 2 π Δ u Δ y λ d o u l · y n ] } Δ u 2 2 ,
Pr { N k [ n ] + M k [ n ] = N ; θ t k , o } = exp { ( I k [ n ] + I b [ n ] ) } ( I k [ n ] + I b [ n ] ) N N ! ,
I k [ n ] = γ [ n ] T y m h ( y n x m ; θ t k ) o ( x m ) Δ x 2
= γ [ n ] m h ( y n x m ; θ t k ) o [ m ] .
p g k [ n ] ( g ) = ( 2 π σ 2 [ n ] ) 1 2 exp [ g 2 ( 2 σ 2 [ n ] ) ] ,
p d k [ n ] ( d , θ t k , o ) = N = 0 p g k [ n ] ( d b [ n ] N ) Pr { N k [ n ] + M k [ n ] = N ; θ t k , o } .
l o θ = k = 1 K n p d k [ n ] ( d k [ n ] ; θ t k , o ) ,
𝐿 o θ = ln l o θ
= k = 1 K n ln p d k [ n ] ( d k [ n ] ; θ t k , o ) .
d ˜ k [ n ] = d k [ n ] b [ n ] + σ 2 [ n ]
= N k [ n ] + M k [ n ] + g k [ n ] + σ 2 [ n ] ,
Pr { d ˜ k [ n ] = D ; θ t k , o } = exp { ( I k [ n ] + I b [ n ] + σ 2 [ n ] ) } ( I k [ n ] + I b [ n ] + σ 2 [ n ] ) D D ! ,
𝐿 o θ = k = 1 K n { ( I k [ n ] + I b [ n ] + σ 2 [ n ] ) + d ˜ k [ n ] ln ( I k [ n ] + I b [ n ] + σ 2 [ n ] ) } ,

Metrics