Abstract

A modelocked fiber laser, operating in the soliton regime without any explicit intracavity polarizers, is observed to spontaneously lock its output polarization for certain values of the intracavity birefringence. For other settings of the intracavity birefringence the output polarization undergoes pulse-to-pulse evolution. The dependence of the output polarization evolution on intracavity birefringence outside of the locking regions can be understood with a simple model. The locking behavior exhibits several surprising aspects and is not completely understood.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. N. Duling III and M.L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge Univ. Press, Cambridge, 1995).
  2. see e.g., M.C. Nuss, W.H. Knox, and U. Koren, "Scaleable 32 channel chirped-pulse WDM source ", Electron. Lett. 32, 1311-1312 (1996).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).
  4. I. N. Duling III, "Subpicosecond all-fiber erbi um laser", Electron. Lett. 27, 544-545 (1991); D.J. Richardson, R.I. Laming, D.N. Payne, M.W. Phillips and V.J. Matsas, "320 fs soliton generation with passively mode-locked erbium fiber laser", Electron. Lett. 27, 730-732 (1991).
    [CrossRef]
  5. M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober and A.J. Schmidt, "Modelocking with cross-phase and self-phase modulation", Opt. Lett. 16, 502-504 (1991); C.J. Chen, P.K.A. Wai, C.R. Menyuk, "Soliton fiber ring laser", Opt. Lett. 17, 417-419 (1992); V.J. Matsas, T.P. Newson, D.J. Richardson and D.J. Payne, "Selfstarting Passively Mode-Locked Fiber Ring Soliton Laser Exploiting Nonlinear Polarization Rotation ", Electron. Lett. 28, 1391-1393 (1992); K. Tamura, H.A. Haus and E.P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser ", Electron. Lett. 28, 2226-2228 (1992).
    [CrossRef] [PubMed]
  6. K. Tamura, E.P. Ippen, H.A. Haus and L.E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser", Opt. Lett. 18, 1080-1082 (1993); K. Tamura, L.E. Nelson, H.A. Haus and E.P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers ", Appl. Phys. Lett. 64, 149-151 (1994); H.A. Haus, K. Tamura, L.E. Nelson and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment", IEEE J. Quant. Electron. 31, 591-598 (1995).
    [CrossRef] [PubMed]
  7. E. A. De Souza, C.E. Soccolich, W. Pleibel, R.H. Stolen, J.R Simpson and D.J. DiGiovanni, "Saturable Absorber Modelocked Polarization Maintaining Erbium-Doped Fiber Laser ", Electron. Lett. 29, 447-449 (1993); B.C. Barnett, L. Rahman, M.N. Islam, Y.C. Chen, P. Bhattacharya, W. Riha, K.V. Reddy, A.T. Howe, K.A. Stair, H. Iwamura, S.R. Friberg and T. Mukai, "High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber ", Opt. Lett. 20, 471-473 (1995).
    [CrossRef]
  8. S. Tsuda, W.H. Knox, J.L. Zyskind, J.E. Cunningham, W.Y. Jan and R. Pathak, "Broadband compact mode-locked Er/Yb fiber Laser", Conf. Laser Electro-Optics 96, OSA Tech. Digest Series 9, (OSA, Washington DC, 1996) 494.
  9. B. C. Collings, K. Bergman, S.T. Cundiff, S. Tsuda, J.N. Kutz, J.E. Cunningham, W.Y. Jan, M. Koch and W.H. Knox, "Short Cavity Erbium/Ytterbium Fiber Lasers Modelocked with a Saturable Bragg Reflector ", submitted for publication.
  10. S. Tsuda, W.H. Knox, E.A. de Souza, W.Y. Jan and J.E. Cunningham, "Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond modelocking in solid-state lasers ", Opt. Lett. 20, 1406-1408 (1995); S.Tsuda, W.H.Knox, S.T. Cundiff, W.Y. Jan and J.E. Cunningham, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors ", IEEE J. Sel. Topics Quant. Electron. 2, 454-464 (1996).
    [CrossRef] [PubMed]
  11. H. C. Lefevre, "Single-mode fiber fractional wave devices and polarization controllers ", Electron. Lett. 16, 778-780 (1980).
    [CrossRef]
  12. S. T. Cundiff, W.H. Knox and M.C. Nuss, "Active feed-forward channel equalization for chirped pulse wavelength division multiplexing ", Electron. Lett. 33, 10-11 (1997).
    [CrossRef]
  13. see e.g., E. Collett, Polarized Light (Marcel Dekker, New York, 1993).
  14. N. Pandit, D.U. Noske, S.M.J. Kelly and J.R. Taylor, "Characteristic instability of fiber loop soliton lasers ", Electron. Lett. 28, 455-457 (1992); S.M.J. Kelly, "Characteristic sideband instability of periodically amplified average soliton", Electron. Lett. 28, 806-807 (1992).
    [CrossRef]
  15. B. C. Collings, K. Bergman, S. Tsuda, and W.H. Knox, "Femtosecond short cavity 2.5 GHz fiber laser harmonically modelocked by a saturable Bragg reflector with low temporal jitter ", presented at CLEO 97, 1997 OSA Technical Digest Series 11 (Optical Society of America, Washington DC, 1997) p. 343-344.
  16. A. K. Srivastava, J.L. Zyskind, J.W. Sulhoff, J.D. Evankow jr., M.A. Mills, "Room temperature spectral hole burning in erbium-doped fiber amplifiers ", OFC 96, OSA Technical Digest Series 2 (Optical Society of America, Washington DC, 1996) 33-34.
    [CrossRef]
  17. H. G. Winful, "Self-induced polarization changes in birefringent optical fiber ", Appl. Phys. Lett. 47, 213-215 (1985); H.G. Winful, "Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices ", Opt. Lett. 11, 33-35 (1986).
    [CrossRef]
  18. S. G. Evangelides jr., L.F. Mollenauer, J.P. Gordon and N.S. Bergano, "Polarization multiplexing with solitons", J. Lightwave Tech. 10, 28-35 (1992).
    [CrossRef]
  19. N. N. Akhmediev, A.V. Buryak, J.M. Soto-Crespo and D.R. Andersen, "Phase-locked stationary soliton states in birefringent nonlinear optical fibers", J. Opt. Soc. Am. B 12, 434-439 (1995).
    [CrossRef]
  20. Y. Barad and Y. Silberberg, "Polarization Evolution and Polarization Instability of Solitons in a Birefringent Optical Fiber", Phys. Rev. Lett. 78, 3290-3293 (1997).
    [CrossRef]

Other

I. N. Duling III and M.L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge Univ. Press, Cambridge, 1995).

see e.g., M.C. Nuss, W.H. Knox, and U. Koren, "Scaleable 32 channel chirped-pulse WDM source ", Electron. Lett. 32, 1311-1312 (1996).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

I. N. Duling III, "Subpicosecond all-fiber erbi um laser", Electron. Lett. 27, 544-545 (1991); D.J. Richardson, R.I. Laming, D.N. Payne, M.W. Phillips and V.J. Matsas, "320 fs soliton generation with passively mode-locked erbium fiber laser", Electron. Lett. 27, 730-732 (1991).
[CrossRef]

M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober and A.J. Schmidt, "Modelocking with cross-phase and self-phase modulation", Opt. Lett. 16, 502-504 (1991); C.J. Chen, P.K.A. Wai, C.R. Menyuk, "Soliton fiber ring laser", Opt. Lett. 17, 417-419 (1992); V.J. Matsas, T.P. Newson, D.J. Richardson and D.J. Payne, "Selfstarting Passively Mode-Locked Fiber Ring Soliton Laser Exploiting Nonlinear Polarization Rotation ", Electron. Lett. 28, 1391-1393 (1992); K. Tamura, H.A. Haus and E.P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser ", Electron. Lett. 28, 2226-2228 (1992).
[CrossRef] [PubMed]

K. Tamura, E.P. Ippen, H.A. Haus and L.E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser", Opt. Lett. 18, 1080-1082 (1993); K. Tamura, L.E. Nelson, H.A. Haus and E.P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers ", Appl. Phys. Lett. 64, 149-151 (1994); H.A. Haus, K. Tamura, L.E. Nelson and E.P. Ippen, "Stretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experiment", IEEE J. Quant. Electron. 31, 591-598 (1995).
[CrossRef] [PubMed]

E. A. De Souza, C.E. Soccolich, W. Pleibel, R.H. Stolen, J.R Simpson and D.J. DiGiovanni, "Saturable Absorber Modelocked Polarization Maintaining Erbium-Doped Fiber Laser ", Electron. Lett. 29, 447-449 (1993); B.C. Barnett, L. Rahman, M.N. Islam, Y.C. Chen, P. Bhattacharya, W. Riha, K.V. Reddy, A.T. Howe, K.A. Stair, H. Iwamura, S.R. Friberg and T. Mukai, "High-power erbium-doped fiber laser mode locked by a semiconductor saturable absorber ", Opt. Lett. 20, 471-473 (1995).
[CrossRef]

S. Tsuda, W.H. Knox, J.L. Zyskind, J.E. Cunningham, W.Y. Jan and R. Pathak, "Broadband compact mode-locked Er/Yb fiber Laser", Conf. Laser Electro-Optics 96, OSA Tech. Digest Series 9, (OSA, Washington DC, 1996) 494.

B. C. Collings, K. Bergman, S.T. Cundiff, S. Tsuda, J.N. Kutz, J.E. Cunningham, W.Y. Jan, M. Koch and W.H. Knox, "Short Cavity Erbium/Ytterbium Fiber Lasers Modelocked with a Saturable Bragg Reflector ", submitted for publication.

S. Tsuda, W.H. Knox, E.A. de Souza, W.Y. Jan and J.E. Cunningham, "Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond modelocking in solid-state lasers ", Opt. Lett. 20, 1406-1408 (1995); S.Tsuda, W.H.Knox, S.T. Cundiff, W.Y. Jan and J.E. Cunningham, "Mode-Locking Ultrafast Solid-State Lasers with Saturable Bragg Reflectors ", IEEE J. Sel. Topics Quant. Electron. 2, 454-464 (1996).
[CrossRef] [PubMed]

H. C. Lefevre, "Single-mode fiber fractional wave devices and polarization controllers ", Electron. Lett. 16, 778-780 (1980).
[CrossRef]

S. T. Cundiff, W.H. Knox and M.C. Nuss, "Active feed-forward channel equalization for chirped pulse wavelength division multiplexing ", Electron. Lett. 33, 10-11 (1997).
[CrossRef]

see e.g., E. Collett, Polarized Light (Marcel Dekker, New York, 1993).

N. Pandit, D.U. Noske, S.M.J. Kelly and J.R. Taylor, "Characteristic instability of fiber loop soliton lasers ", Electron. Lett. 28, 455-457 (1992); S.M.J. Kelly, "Characteristic sideband instability of periodically amplified average soliton", Electron. Lett. 28, 806-807 (1992).
[CrossRef]

B. C. Collings, K. Bergman, S. Tsuda, and W.H. Knox, "Femtosecond short cavity 2.5 GHz fiber laser harmonically modelocked by a saturable Bragg reflector with low temporal jitter ", presented at CLEO 97, 1997 OSA Technical Digest Series 11 (Optical Society of America, Washington DC, 1997) p. 343-344.

A. K. Srivastava, J.L. Zyskind, J.W. Sulhoff, J.D. Evankow jr., M.A. Mills, "Room temperature spectral hole burning in erbium-doped fiber amplifiers ", OFC 96, OSA Technical Digest Series 2 (Optical Society of America, Washington DC, 1996) 33-34.
[CrossRef]

H. G. Winful, "Self-induced polarization changes in birefringent optical fiber ", Appl. Phys. Lett. 47, 213-215 (1985); H.G. Winful, "Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices ", Opt. Lett. 11, 33-35 (1986).
[CrossRef]

S. G. Evangelides jr., L.F. Mollenauer, J.P. Gordon and N.S. Bergano, "Polarization multiplexing with solitons", J. Lightwave Tech. 10, 28-35 (1992).
[CrossRef]

N. N. Akhmediev, A.V. Buryak, J.M. Soto-Crespo and D.R. Andersen, "Phase-locked stationary soliton states in birefringent nonlinear optical fibers", J. Opt. Soc. Am. B 12, 434-439 (1995).
[CrossRef]

Y. Barad and Y. Silberberg, "Polarization Evolution and Polarization Instability of Solitons in a Birefringent Optical Fiber", Phys. Rev. Lett. 78, 3290-3293 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser cavity and measurement setup. The laser cavity is shown in blue.

Fig. 2
Fig. 2

RF spectra without (a) and with (b) the external linear polarizer. Δ denotes the polarization evolution frequency (PEF). (c) shows how the pulse-to-pulse evolution of the polarization ellipse is mapped into amplitude modulation , t is the cavity round-trip time.

Fig. 3
Fig. 3

Polarization evolution frequency as function of the angles of the two polarization controller paddles for CW operation of the laser.

Fig. 4
Fig. 4

Simulated PEF(Θ12). ϕ12 is the retardance of the two polarization controllers, ϕR is the residual retardance.

Fig. 5
Fig. 5

Modelocked PEF(Θ12). a) full map, b) higher resolution scan of polarization locking regions.

Fig. 6
Fig. 6

High resolution scan of PEF vs. Θ2 for fixed Θ1 = 110°.

Fig. 7
Fig. 7

Optical (left) and corresponding RF (right) spectra for 3 different settings of Q1 and Q2. For the top two panels the polarization is not locked, for the bottom panel it is locked. In the optical spectra, CSB denotes sidebands that are due to the period perturbation by the cavity, while PSB denotes sidebands due to the period evolution of the polarization over several cavity round trips. The peak marked by C in the RF spectra is the fundamental repetition rate, while those marked by P are due to polarization evolution. The small peaks in the polarization locked case is due to mode beating in the pump laser, not polarization evolution.

Metrics