Abstract

Tire debris particles from low severity laboratory wear tests have been investigated by the TAOS optical scattering facility at Yale University. The incident wavelength is 532 nm. After the TAOS event some particle samples have been imaged by a scanning electron microscope and microanalyzed. The TAOS intensity patterns recorded within a solid angle in the backward sector have been processed by cluster analysis and compared with the patterns computed by a T-matrix code. Preliminary agreement has been found between TAOS data and the particle models (size, shape, refractive index). The purpose of the investigation is to obtain signatures of the material, based on its TAOS pattern.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observations and calculations of light scattering from clusters of spheres

Stephen Holler, Jean-Claude Auger, Brian Stout, Yongle Pan, Jerold R. Bottiger, Richard K. Chang, and Gorden Videen
Appl. Opt. 39(36) 6873-6887 (2000)

Two-dimensional angular optical scattering for the characterization of airborne microparticles

Stephen Holler, Yongle Pan, Richard K. Chang, Jerold R. Bottiger, Steven C. Hill, and David B. Hillis
Opt. Lett. 23(18) 1489-1491 (1998)

Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates

Stephen Holler, Simeone Zomer, Giovanni F. Crosta, Yong-le Pan, Richard K. Chang, and Jerold R. Bottiger
Appl. Opt. 43(33) 6198-6206 (2004)

References

  • View by:
  • |
  • |
  • |

  1. Commissione Delle Comunità Europee, “Documento informativo sugli pneumatici usati” (Direzione Generale Ambiente, Sicurezza Nucleare e Protezione Civile delle Comunità Europee: Brussels, B, 1991)
  2. Environmental Protection Agency, “Summary of Nationwide Emission Estimates of Air Pollutants, 1969”, (Office of Air Programs, Div of Appl Technol: Washington, DC, May 1971)
  3. M.I. Mishchenko, J.W. Hovenieru, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000)
  4. G. Videen, Q. Fu, and P. Chylek, Eds, Light Scattering by Non Spherical Particles: Halifax Contributions, (ARL: Adelphi, MD, 2000)
  5. S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
    [Crossref]
  6. M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)
  7. L. Reimer,Scanning Electron Microscopy - Physics of Image Formation and Microanalysis, (II Edition, Springer: Berlin1998)
  8. M. I. Mishchenko, J.W. Hovenier, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000), Ch. 6.
  9. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particleshttp://www.giss.nasa.gov/~crmim/t_matrix.html
  10. P.C. Waterman, “Symmetry, Unitarity and Geometry in Electromagnetic Scattering”, Phys. Rev. D,  3, 825–839 (1971).
    [Crossref]
  11. A.G. Ramm, “Multidimensional Inverse Scattering Problems”, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 51, (Longman: Harlow1992)
  12. G.F. Crosta and S. Zomer, Numerical Simulation of Forward Electromagnetic Obstacle Scattering, http://web.tiscalinet.it/_TAOS/index.html

1998 (1)

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

1971 (1)

P.C. Waterman, “Symmetry, Unitarity and Geometry in Electromagnetic Scattering”, Phys. Rev. D,  3, 825–839 (1971).
[Crossref]

Bottiger, J.R.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Camatini, M.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Cencetti, S.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Chang, R.K.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Corbetta, G. M.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Crosta, G.F.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

G.F. Crosta and S. Zomer, Numerical Simulation of Forward Electromagnetic Obstacle Scattering, http://web.tiscalinet.it/_TAOS/index.html

Dolukhanyan, T.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Giuliani, G. P.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Hill, S.C.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Hillis, D.B.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Holler, S.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Hovenier, J.W.

M. I. Mishchenko, J.W. Hovenier, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000), Ch. 6.

Hovenieru, J.W.

M.I. Mishchenko, J.W. Hovenieru, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000)

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particleshttp://www.giss.nasa.gov/~crmim/t_matrix.html

Mishchenko, M. I.

M. I. Mishchenko, J.W. Hovenier, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000), Ch. 6.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particleshttp://www.giss.nasa.gov/~crmim/t_matrix.html

Mishchenko, M.I.

M.I. Mishchenko, J.W. Hovenieru, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000)

Pan, Y.

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Ramm, A.G.

A.G. Ramm, “Multidimensional Inverse Scattering Problems”, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 51, (Longman: Harlow1992)

Regazzoni, C.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Reimer, L.

L. Reimer,Scanning Electron Microscopy - Physics of Image Formation and Microanalysis, (II Edition, Springer: Berlin1998)

Sung, C.

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particleshttp://www.giss.nasa.gov/~crmim/t_matrix.html

Travis, L.D.

M. I. Mishchenko, J.W. Hovenier, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000), Ch. 6.

M.I. Mishchenko, J.W. Hovenieru, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000)

Waterman, P.C.

P.C. Waterman, “Symmetry, Unitarity and Geometry in Electromagnetic Scattering”, Phys. Rev. D,  3, 825–839 (1971).
[Crossref]

Zomer, S.

G.F. Crosta and S. Zomer, Numerical Simulation of Forward Electromagnetic Obstacle Scattering, http://web.tiscalinet.it/_TAOS/index.html

Opt. Let. (1)

S. Holler, Y. Pan, R.K. Chang, J.R. Bottiger, S.C. Hill, and D.B. Hillis “Two Dimensional Angular Optical Scattering for the Characterization of Airborne Micro Particles” Opt. Let. 23 #18,1489–91, (1998)
[Crossref]

Phys. Rev. D (1)

P.C. Waterman, “Symmetry, Unitarity and Geometry in Electromagnetic Scattering”, Phys. Rev. D,  3, 825–839 (1971).
[Crossref]

Other (10)

A.G. Ramm, “Multidimensional Inverse Scattering Problems”, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 51, (Longman: Harlow1992)

G.F. Crosta and S. Zomer, Numerical Simulation of Forward Electromagnetic Obstacle Scattering, http://web.tiscalinet.it/_TAOS/index.html

M. Camatini, G.F. Crosta, T. Dolukhanyan, C. Sung, G. P. Giuliani, G. M. Corbetta, S. Cencetti, and C. Regazzoni, “Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens”, to appear in Materials Characterization, (2001)

L. Reimer,Scanning Electron Microscopy - Physics of Image Formation and Microanalysis, (II Edition, Springer: Berlin1998)

M. I. Mishchenko, J.W. Hovenier, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000), Ch. 6.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, T Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particleshttp://www.giss.nasa.gov/~crmim/t_matrix.html

Commissione Delle Comunità Europee, “Documento informativo sugli pneumatici usati” (Direzione Generale Ambiente, Sicurezza Nucleare e Protezione Civile delle Comunità Europee: Brussels, B, 1991)

Environmental Protection Agency, “Summary of Nationwide Emission Estimates of Air Pollutants, 1969”, (Office of Air Programs, Div of Appl Technol: Washington, DC, May 1971)

M.I. Mishchenko, J.W. Hovenieru, and L.D. Travis, Light Scattering by Nonspherical Particles, (Academic Press: New York, NY, 2000)

G. Videen, Q. Fu, and P. Chylek, Eds, Light Scattering by Non Spherical Particles: Halifax Contributions, (ARL: Adelphi, MD, 2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Triggering and TAOS optics; (b) the reference frame; (c) the ABBE sine condition.

FIGURE 2.
FIGURE 2.

TAOS pattern produced by a PS sphere of nominal radius=5 µm (psl10b1b). The intensity scale, in arbitrary units, is the same for all TAOS images.

FIGURE 3.
FIGURE 3.

TAOS pattern produced by particle LS01 of material b.

FIGURE 4.
FIGURE 4.

TAOS pattern produced by particle LS04 of material b.

FIGURE 5.
FIGURE 5.

SE micrograph of particle yfa2, material b.

FIGURE 6.
FIGURE 6.

SE micrograph of particle yfa6.

FIGURE 7.
FIGURE 7.

Rounded cone Th14Sj (height 1.4 µm, Im[m]=0.1) and its scattering pattern inΩ. . The pattern fits in cluster # 1. From G.F. Crosta, S. Zomer, Numerical Simulation of Forward Obstacle Scattering, http://web.tiscalinet.it/_TAOS/index.html

Tables (1)

Tables Icon

Table 1. Normalized peak intensities above background of the elements detected in material b Values normalized separately, for each particle, with respect to that Kα peak, which exhibits the highest intensity. Neither Ca nor Fe could be detected in any particle. ND=not detectable.

Metrics