Abstract

The angular transmissivity of high numerical aperture air-clad fibres is measured as a function of skewness of the launched light. Within the experimental limits the measured transmissivity of skew rays is significantly lower compared to theoretical predictions for air-clad fibres with uniform cladding surfaces. The discrepancy is attributed to diffractive losses of skew rays from the periodic corrugations at the pump core-cladding air interface.

©2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
    [Crossref]
  2. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
    [Crossref]
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 25, 6088–6092 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6088
    [Crossref]
  4. K. Furusawa, A. Malinowski, J.H.V. Price, T.M. Monro, J.K. Sahu, J. Nilsson, and D.J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9, 714–720 (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714
    [Crossref] [PubMed]
  5. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
    [Crossref] [PubMed]
  6. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Thunnermann, R. Ilew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode area photonic crystal fiber laser,” Opt. Express 11, 7, 818–823 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818
    [Crossref] [PubMed]
  7. M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).
  8. R. Potter, “Transmission properties of optical fibers,” J. Opt. Soc. Am. 51, 10, 1079–1089 (1961).
    [Crossref]
  9. R. Potter, “Light-collecting properties of a perfect circular optical fiber,” J. Opt. Soc. Am. 53, 2, 256–260 (1963).
    [Crossref]
  10. M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Applied Optics 44, 12, 2318–2326 (2005).
    [Crossref] [PubMed]
  11. J. Canning, “Grating confinement in a photonic crystal fibre,” Opt. Commun. 176/1– 3, 121–124 (2000).
    [Crossref]
  12. M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikäinen, “Bending-induced colouring in a photonic crystal fibre,” Opt. Express 7, 2, 88–94 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-88
    [Crossref] [PubMed]
  13. C. Palmer, Diffraction Grating Handbook Equation 2-1,” 5th Edition, (Thermo RGL, St. Paul St., Rochester, New York, USA, 2002).
  14. S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).
  15. D.K. Gramotnev, “Grazing-angle scattering of electromagnetic waves in periodic Bragg arrays,” Opt. Quantum Electron. 33, 253–288 (2001).
    [Crossref]
  16. M.P. Bakhturin, L.A. Chernozatonskii, and D.K. Gramotnev, “Planar optical waveguides coupled by means of Bragg scattering,” Appl. Opt. 34, 15, 2692–2702 (1995).
    [Crossref] [PubMed]

2005 (2)

2004 (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

2003 (2)

2002 (1)

D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
[Crossref]

2001 (2)

2000 (2)

1995 (1)

1963 (1)

1961 (1)

Åslund, M.

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

Bakhturin, M.P.

Birks, T.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
[Crossref] [PubMed]

Broeng, J.

Canning, J.

J. Canning, “Grating confinement in a photonic crystal fibre,” Opt. Commun. 176/1– 3, 121–124 (2000).
[Crossref]

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikäinen, “Bending-induced colouring in a photonic crystal fibre,” Opt. Express 7, 2, 88–94 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-88
[Crossref] [PubMed]

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

Chernozatonskii, L.A.

Eckhardt, H-S.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Ferwana, S.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Feuermann, D.

D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
[Crossref]

Furusawa, K.

Gordon, J.M.

D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
[Crossref]

Gramotnev, D.K.

D.K. Gramotnev, “Grazing-angle scattering of electromagnetic waves in periodic Bragg arrays,” Opt. Quantum Electron. 33, 253–288 (2001).
[Crossref]

M.P. Bakhturin, L.A. Chernozatonskii, and D.K. Gramotnev, “Planar optical waveguides coupled by means of Bragg scattering,” Appl. Opt. 34, 15, 2692–2702 (1995).
[Crossref] [PubMed]

Haynes, R.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Hedley, T.D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

Huleihil, M.

D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
[Crossref]

Ilew, R.

Jackson, S. D.

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

Jakobsen, C.

Jeong, Y.

Khalilov, V. Kh.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Klein, K-F.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Knight, J.C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
[Crossref] [PubMed]

Lederer, F.

Limpert, J.

Lyytikäinen, K.

M.A. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikäinen, “Bending-induced colouring in a photonic crystal fibre,” Opt. Express 7, 2, 88–94 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-88
[Crossref] [PubMed]

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

Malinowski, A.

Monro, T.M.

Nelson, G.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Nilsson, J.

Nolte, S.

Palmer, C.

C. Palmer, Diffraction Grating Handbook Equation 2-1,” 5th Edition, (Thermo RGL, St. Paul St., Rochester, New York, USA, 2002).

Payne, D. N.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
[Crossref] [PubMed]

Petersson, A.

Potter, R.

Price, J.H.V.

Richardson, D.J.

Russel, P. st J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
[Crossref] [PubMed]

Ryan, T.

Sahu, J. K.

Sahu, J.K.

Schreiber, T.

Simon, T.

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Teixeira, A.

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

Tekelioglu, M.

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Applied Optics 44, 12, 2318–2326 (2005).
[Crossref] [PubMed]

Thunnermann, A.

van Eijkelenborg, M.A.

Vienne, G.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, and P. st J. Russel, “High power air-clad photonic crystal fiber laser,” Opt. Express 11, 48–53 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX- 11-1-48
[Crossref] [PubMed]

Wood, B. D.

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Applied Optics 44, 12, 2318–2326 (2005).
[Crossref] [PubMed]

Zellmer, H.

Appl. Opt. (1)

Applied Optics (1)

M. Tekelioglu and B. D. Wood, “Prediction of light-transmission losses in plastic optical fibers,” Applied Optics 44, 12, 2318–2326 (2005).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J.C. Knight, T. Birks, T.D. Hedley, and P. st J. Russel, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 3, 843–845 (2004).
[Crossref]

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

J. Canning, “Grating confinement in a photonic crystal fibre,” Opt. Commun. 176/1– 3, 121–124 (2000).
[Crossref]

Opt. Express (5)

Opt. Quantum Electron. (1)

D.K. Gramotnev, “Grazing-angle scattering of electromagnetic waves in periodic Bragg arrays,” Opt. Quantum Electron. 33, 253–288 (2001).
[Crossref]

Solar Energy (1)

D. Feuermann, J.M. Gordon, and M. Huleihil, “Light leakage in optical fibers: experimental results, modeling and consequences for solar concentrators,” Solar Energy 72, 195–204 (2002).
[Crossref]

Other (3)

M. Åslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikäinen, “The influence of skew rays to the measurement of the NA of air-clad fibres,” Submitted to Opt. Commun. (2005).

C. Palmer, Diffraction Grating Handbook Equation 2-1,” 5th Edition, (Thermo RGL, St. Paul St., Rochester, New York, USA, 2002).

S. Ferwana, H-S. Eckhardt, T. Simon, K-F. Klein, R. Haynes, V. Kh. Khalilov, and G. Nelson, “All-silica fiber with low or medium OH-content for broadband applications in astronomy,” Proc. SPIE5494-76, (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Close-up of periodically corrugated core-cladding interface of in-house fabricated air-clad fibre.

Fig. 2.
Fig. 2.

Schematic diagram of experimental setup. (a) A HeNe laser probe is focused into the core of the air-clad fibre at incident angle (γ) onto the corrugated core-cladding interface. (b) Illustration of the definition of the level of skewness (ξ) of the incident beam; dotted circles represents approximate position of the beam.

Fig. 3.
Fig. 3.

Transmissivity of air-clad fibre for different input angles as a function of skewness of launch field, solid line represents the transmissivity of light launched at 10°, the dashed line 15°, the dotted line 20° and the dash-dotted line 30°. Inset: Farfield image of diffracted light emerging from side of air-clad fibre.

Fig. 4.
Fig. 4.

Conical diffraction angle, β, for orders m=+1 (solid line), and m=-1 (dotted line), with incident light of angle γ=20 as a function of skewness, ξ.

Fig. 5.
Fig. 5.

Far-field measurements of fibre output for a collimated 60° degree input beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ d = cos ( ε ) ( sin α + sin β ) ,
m λ d = cos ( 90 γ ) ( 90 ξ + sin β ) .

Metrics