Abstract

Microstructured optical fibers with the low refractive index core surrounded by high refractive index cylindrical inclusions reveal several intriguing properties. Firstly, there is a guiding regime in which the fibers’ confinement loss is strongly dependent of wavelength. In this regime, the positions of loss maxima are largely determined by the individual properties of high index inclusions rather than their position and number. Secondly, the spectra of these fibers can be tuned by changing the refractive index of the inclusions. In this paper we review transmission properties of these fibers and discuss their potential applications for designing tunable photonic devices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, �??Fibre-optical features of a glass sponge,�?? Nature 424, 899-900 (2003).
    [CrossRef] [PubMed]
  2. G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>.
    [CrossRef] [PubMed]
  6. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  7. P. St. J. Russell, �??Photonic crystal fibres,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  8. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, �??An all-dielectric coaxial wavguide,�?? Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  9. C. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber gratings,�?? Appl. Phys. Lett. 82, 1338-1340 (2003).
    [CrossRef]
  10. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, B. J. Eggleton, �??Highly tunable birefringent microstructured optical fiber,�?? Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  11. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. M. Bassett, S. C. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319</a>.
    [CrossRef] [PubMed]
  12. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  13. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) Vol. 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2002), pp. 466-468.
  14. T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  15. N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594(2002).
    [CrossRef]
  16. A. K. Abeeluck, N. M. Litchinitser, C. Headley, B. J. Eggleton, �??Analysis of spectral characteristics of photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>.
    [CrossRef] [PubMed]
  17. T. P. White, R. C. McPhedran, C. Martijn de Sterke, N. M. Litchinitser, B. J. Eggleton , �??Resonance and scattering in microstructured optical fibers,�?? Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  18. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T.P. White, R.C. McPhedran, C. Martijn de Sterke, �??Resonances and modal cutoff in microstructured optical waveguides,�?? Opt. Express 11, 1243-1251 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243</a>.
    [CrossRef] [PubMed]
  19. M. A. Duguay, Y. Kukubun, T. L. Koch, L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,�?? Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  20. A. Iocco, H. G. Limberger, R. P. Salathé. L. A. Everall, K. E. Chisholm, J. A. R. Williams, I. Bennion, �??Bragg grating fast tunable filter for wavelength division multiplexing,�?? J. Lightwave Technol. 17, 1217-1221 (1999).
    [CrossRef]
  21. H. Y. Liu, G. D. Peng, P. L. Chu, �??Polymer fiber Bragg gratings with 28 dB transmission rejection,�?? IEEE Photon. Technol. Lett. 14, 935-937 (2002).
    [CrossRef]
  22. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Select. Topics Quantum Electron. 6, 150-162 (2000).
    [CrossRef]
  23. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, L. C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  24. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, R. C. McPhedran, �??Multipole method for microstructured optical fibers. II. Implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  26. A. C. Lind and J. M. Greenberg, �??Electromagnetic scattering by obliquely oriented cylinders,�?? J. Appl. Phys. 37, 3195-3203 (1966).
    [CrossRef]
  27. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1983).

Appl. Phys. Lett.

C. Kerbage and B. J. Eggleton, �??Tunable microfluidic optical fiber gratings,�?? Appl. Phys. Lett. 82, 1338-1340 (2003).
[CrossRef]

M. A. Duguay, Y. Kukubun, T. L. Koch, L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,�?? Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Select. Topics Quantum Electron. 6, 150-162 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Y. Liu, G. D. Peng, P. L. Chu, �??Polymer fiber Bragg gratings with 28 dB transmission rejection,�?? IEEE Photon. Technol. Lett. 14, 935-937 (2002).
[CrossRef]

J. Appl. Phys.

A. C. Lind and J. M. Greenberg, �??Electromagnetic scattering by obliquely oriented cylinders,�?? J. Appl. Phys. 37, 3195-3203 (1966).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, J. Aizenberg, �??Fibre-optical features of a glass sponge,�?? Nature 424, 899-900 (2003).
[CrossRef] [PubMed]

Opt. Express

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>.
[CrossRef] [PubMed]

A. K. Abeeluck, N. M. Litchinitser, C. Headley, B. J. Eggleton, �??Analysis of spectral characteristics of photonic bandgap waveguides,�?? Opt. Express 10, 1320-1333 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320</a>.
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T.P. White, R.C. McPhedran, C. Martijn de Sterke, �??Resonances and modal cutoff in microstructured optical waveguides,�?? Opt. Express 11, 1243-1251 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243</a>.
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589-2596 (2003).
[CrossRef] [PubMed]

M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. M. Bassett, S. C. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-319</a>.
[CrossRef] [PubMed]

Opt. Lett.

OSA Trends in Optics and Photon. (TOPS)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) Vol. 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2002), pp. 466-468.

Science

P. St. J. Russell, �??Photonic crystal fibres,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, �??An all-dielectric coaxial wavguide,�?? Science 289, 415-419 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1983).

Supplementary Material (2)

» Media 1: MPEG (1445 KB)     
» Media 2: MPEG (1446 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) MOF with low-index core and high-index inclusions, (b) Corresponding cross-section of the refractive index profile along x axis, (c) Planar optical waveguide with low-index core and high-index layers.

Fig. 2.
Fig. 2.

(a) A schematic of a waveguide, (b) Corresponding transmission spectrum at a distance of 5cm in z direction, (c) Electric field profile at a distance of 5cm at the wavelength corresponding to high transmission (1) and a transmission minimum (2), (d) Electric field oscillations inside the high-index layer.

Fig. 3.
Fig. 3.

Comparison of MOF loss properties with forward-to-backward scattering ratio for the plane wave scattering on a single cylinder.

Fig. 4.
Fig. 4.

Upper plot shows the effective refractive index of the modes of the high-index layer as a function of the wavelength. Lower plot shows the effective refractive index of the mode propagating in the low-index core of the entire ARROW structure. Vertical dashed lines correspond to the modal cutoffs.

Fig. 5.
Fig. 5.

(a) Transmission minimum (m=10) for different values of n2, for fixed values of n1=1.4, d=3.437µm. (b) Comparison of the analytical predictions and the numerical simulations for the location of the transmission minimum.

Fig. 6.
Fig. 6.

(a) Schematic of MOF with a micro-heater. MOF air-holes are filled with a high-index material whose refractive index n2 changes with temperature T, (b) Longitudinal component of Poynting vector Sz for the lowest order MOF mode in transmission mode (n=1.8) and in filter mode (n=1.775) along with x cross section of Sz.

Fig. 7.
Fig. 7.

(a) MOF profile used in BPM simulations, (b) Transmission spectra at z=1 mm, (c) (1446 KB) Evolution of the beam profile in MOF with n2=1.8 (the frame shows output beam profile at z=1 mm), (d) (1446 KB) Evolution of the beam profile in MOF with n2=1.775 (the frame shows output beam profile at z=1 mm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 d m n 2 2 n 1 2 , where m = 1 , 2 ,
v g = c n 2 2 β k 1 1 2 Δ ( 1 η )
J 0 ( k t d 2 ) = 0 .
J 1 ( k t d 2 ) = 0 .
λ m = 2 d n 2 2 n 1 2 m + 1 2 , m = 1 , 2 ,
k t d J 0 ( k t d 2 ) 2 J 1 ( k t d 2 ) = 2 Δ 1 2 Δ .
4 Δ 1 1 2 Δ k t d 1 .
Δ λ m = 2 d ( n 2 2 ( T 2 ) n 1 2 n 2 2 ( T 1 ) n 1 2 ) { m 1 ( m + 1 2 ) 1 ,

Metrics