Abstract

We propose a general design methodology for photonic crystal (PhC) diplexers, which is carried out along a filtering T-junction. The diplexer operation is investigated while carefully analyzing the dispersion relations of the three different waveguide channels. All simulations are carried out using the multiple multipole method (MMP), which offers perfect excitation and matching conditions for all waveguide ports involved. The resulting diplexer is highly compact (it covers an area of 13×9 lattice constants) and simple when compared to other PhC diplexer designs.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals �?? Molding the Flow of Light (Princeton University Press, New Jersey, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  3. K. M. Ho, C. T. Chan, C. M. Soukolis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  4. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, �??Donor and acceptor modes in photonic band structure,�?? Phys. Rev. Lett. 67, 3380-3383 (1993).
    [CrossRef]
  5. M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, K. M. Ho, "Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,�?? Phys. Rev. B 48, 14121-14126 (1993).
    [CrossRef]
  6. E. Centeno, D. Felbacq, �??Guiding waves with photonic crystals,�?? Opt. Commun. 160, 57 (1999).
    [CrossRef]
  7. H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,�?? J. Appl. Phys. 79, 7483-7492 (1996).
    [CrossRef]
  8. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, �??Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,�?? J. Appl. Phys. 75, 4753-4755 (1994).
    [CrossRef]
  9. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  10. M. Loncar, J. Vuckovic, A. Scherer, �??Methods for controlling positions of guided modes of photonic crystal waveguides,�?? J. Opt. Soc. Am. B 18, 1362-1368 (2001).
    [CrossRef]
  11. E. Centeno, B. Guizal, D. Felbacq, �??Multiplexing and demultiplexing with photonic crystals,�?? J. Opt. A 1, L10 (1999).
    [CrossRef]
  12. J. Smajic, Ch. Hafner, D. Erni, �??Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,�?? ACES Journal, (to be published).
  13. Christian Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (John Wiley & Sons, Chichester, 1999).
  14. Christian Hafner, MaX-1: A Visual Electromagnetics Platform (John Wiley & Sons, Chichester, 1998).
  15. Christian Hafner, Jasmin Smajic, The Computational Optics Group Web Page (IFH, ETH Zurich), <a href="http://alphard.ethz.ch/">http://alphard.ethz.ch/</a>.
  16. E. Moreno, D. Erni, Ch. Hafner, �??Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,�?? Phys. Rev. E 66, 036618 (2002).
    [CrossRef]
  17. M. Koshiba, Y. Tsui, M. Hikari, �??Time-domain beam propagation method and its application to photonic crystal circuits,�?? J. Lightwave Technol. LT18, 102-110 (2000).
    [CrossRef]
  18. J. Yonekura, M. Ikeda, T. Baba, �??Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,�?? J. Lightwave Technol. LT17, 1500-1508 (1999).
    [CrossRef]
  19. A. Boag and B. Z. Steinberg, �??Narrow-band microcavity waveguides in photonic crystals,�?? J. Opt. Soc. Am. A 18, 2799-2805 (2001).
    [CrossRef]
  20. A. Mekis, S. Fan, and J. D. Yoannopoulos, �??Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,�?? IEEE Microwave Guided Wave Lett. 9, 502-504 (1999).
    [CrossRef]
  21. K. B. Chung and S. W. Hong, �??Wavelength demultiplexers based on the superprism phenomena in photonic crystals,�?? Appl. Phys. Lett. 81, 1549-1551 (2002).
    [CrossRef]
  22. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, �??Channel drop filters in photonic crystals," Opt. Express 3, 4-10 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>
    [CrossRef] [PubMed]
  23. E. Moreno, D. Erni, and Ch. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B 65 155120 (2002).
    [CrossRef]
  24. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. LT19, 1970-1975 (2001).
    [CrossRef]

Appl. Phys. Lett. (1)

K. B. Chung and S. W. Hong, �??Wavelength demultiplexers based on the superprism phenomena in photonic crystals,�?? Appl. Phys. Lett. 81, 1549-1551 (2002).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

A. Mekis, S. Fan, and J. D. Yoannopoulos, �??Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,�?? IEEE Microwave Guided Wave Lett. 9, 502-504 (1999).
[CrossRef]

J. Appl. Phys. (2)

H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic cand-gap boundaries,�?? J. Appl. Phys. 79, 7483-7492 (1996).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, �??Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,�?? J. Appl. Phys. 75, 4753-4755 (1994).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. A (1)

E. Centeno, B. Guizal, D. Felbacq, �??Multiplexing and demultiplexing with photonic crystals,�?? J. Opt. A 1, L10 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. Centeno, D. Felbacq, �??Guiding waves with photonic crystals,�?? Opt. Commun. 160, 57 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

E. Moreno, D. Erni, and Ch. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B 65 155120 (2002).
[CrossRef]

M. Sigalas, C. M. Soukolis, E. N. Economou, C. T. Chan, K. M. Ho, "Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient,�?? Phys. Rev. B 48, 14121-14126 (1993).
[CrossRef]

Phys. Rev. E (1)

E. Moreno, D. Erni, Ch. Hafner, �??Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method,�?? Phys. Rev. E 66, 036618 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, C. M. Soukolis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, �??Donor and acceptor modes in photonic band structure,�?? Phys. Rev. Lett. 67, 3380-3383 (1993).
[CrossRef]

Other (6)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals �?? Molding the Flow of Light (Princeton University Press, New Jersey, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

J. Smajic, Ch. Hafner, D. Erni, �??Automatic calculation of band diagrams of photonic crystals using the multiple multipole method,�?? ACES Journal, (to be published).

Christian Hafner, Post-modern Electromagnetics Using Intelligent MaXwell Solvers (John Wiley & Sons, Chichester, 1999).

Christian Hafner, MaX-1: A Visual Electromagnetics Platform (John Wiley & Sons, Chichester, 1998).

Christian Hafner, Jasmin Smajic, The Computational Optics Group Web Page (IFH, ETH Zurich), <a href="http://alphard.ethz.ch/">http://alphard.ethz.ch/</a>.

Supplementary Material (3)

» Media 1: MOV (277 KB)     
» Media 2: MOV (205 KB)     
» Media 3: MOV (182 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The band structure for an underlying PhC with perfect square lattice for both E- and H-polarization. The band gaps only appear for E-polarization.

Fig. 2.
Fig. 2.

Dispersion relations for the three involved PhC waveguides (center). The dispersion curves are assigned to their underlying supercells (top, left, right).

Fig. 3.
Fig. 3.

(Top 1 MB, Bottom 1 MB) Diplexer operation: Light propagation (magnitude of the Poynting field) through the diplexer at two different wavelengths showing the corresponding propagation directions.

Fig. 4.
Fig. 4.

The dispersion relation for the improved design of the right waveguide channel with radius r=0.375·a (black lines) together with the dispersion curves of the initial design (Fig. 2).

Fig. 5.
Fig. 5.

(1 MB) Improved diplexer design: Light propagation (depicted as the magnitude of the Poynting field) through the right diplexer channel, (a movie file for the improved right propagation is available).

Tables (2)

Tables Icon

Table 1. Reflectance and transmittance of the first diplexer design.

Tables Icon

Table 2. Reflectance and transmittance of the improved diplexer design.

Metrics