Abstract

We report on the realization and characterization of highly efficient waveguide bends in photonic crystals made of materials with a low in-plane index contrast. By applying an appropriate bend design photonic crystal bends with a transmission of app. 75 % per bend were fabricated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
    [Crossref]
  2. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
    [Crossref]
  3. A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
    [Crossref]
  4. M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
    [Crossref]
  5. A. Talneau, L.Le Gouezigou, and N. Bouadma “Quantitative measurement of low propagation losses at 1.55µm on planar photonic crystal waveguides,” Opt. Lett. 26,1259 (2001)
    [Crossref]
  6. C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
    [Crossref]
  7. S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
    [Crossref] [PubMed]
  8. M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission
  9. P. Lalanne“Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38 (7), 800 – 804 (2002)
    [Crossref]
  10. Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
    [Crossref]
  11. Min Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163 (2002).
    [Crossref]
  12. Steven G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for< Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
    [Crossref] [PubMed]

2003 (2)

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

2002 (4)

P. Lalanne“Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38 (7), 800 – 804 (2002)
[Crossref]

Min Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163 (2002).
[Crossref]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
[Crossref]

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

2001 (3)

2000 (2)

Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Agio, M.

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

Anand, S.

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Augustin, M.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Benisty, H.

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
[Crossref]

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Bouadma, N.

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

A. Talneau, L.Le Gouezigou, and N. Bouadma “Quantitative measurement of low propagation losses at 1.55µm on planar photonic crystal waveguides,” Opt. Lett. 26,1259 (2001)
[Crossref]

De La Rue, R.M.

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Etrich, C.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Fan, Shanhui

Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Forchel, A.

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

Fuchs, H.-J.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Gouezigou, L.Le

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

A. Talneau, L.Le Gouezigou, and N. Bouadma “Quantitative measurement of low propagation losses at 1.55µm on planar photonic crystal waveguides,” Opt. Lett. 26,1259 (2001)
[Crossref]

Houdré, R.

Iliew, R.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Jaskorzynska, B.

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Joannopoulos, J. D.

Johnson, Steven G.

Kafesaki, M.

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

Kamp, M.

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

Kley, E.-B.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Krauss, T. F.

Krauss, T.F.

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Lalanne, P.

P. Lalanne“Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38 (7), 800 – 804 (2002)
[Crossref]

Lederer, F.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Moosburger, J.

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

Mulot, M.

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Nolte, S.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Oesterle, U.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
[Crossref]

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Olivier, S.

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
[Crossref]

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Peschel, U.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Qiu, M.

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Qiu, Min

Min Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163 (2002).
[Crossref]

Rattier, M.

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Schelle, D.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Smith, C. J. M.

Smith, C.J.M.

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Soukoulis, C. M.

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

Swillo, M.

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Talneau, A.

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

A. Talneau, L.Le Gouezigou, and N. Bouadma “Quantitative measurement of low propagation losses at 1.55µm on planar photonic crystal waveguides,” Opt. Lett. 26,1259 (2001)
[Crossref]

Tünnermann, A.

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Villeneuve, Pierre R.

Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Weisbuch, C.

S. Olivier, H. Benisty, C. Weisbuch, C.J.M. Smith, T.F. Krauss, and R. Houdré, “Coupled-mode theory and propagation loss in photonic crystal waveguides,” Opt. Express 11, 1490–1496 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,” J. Lightwave Technol. 20, 1198–1203 (2002)
[Crossref]

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

App. Phys. Lett. (3)

J. Moosburger, M. Kamp, A. Forchel, S. Olivier, H. Benisty, C. Weisbuch, and U. Oesterle “Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering,” App. Phys. Lett. 79 (22), 3579–3581 (2001)
[Crossref]

A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio “Photonic-crystal ultrashort bends with improved transmis-sion and low reflection at 1.55 µm,” App. Phys. Lett. 80, 547 (2002)
[Crossref]

C.J.M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T.F. Krauss, R.M. De La Rue, R. Houdré, and U. Oesterle “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” App. Phys. Lett. 77, 2813 (2000)
[Crossref]

Appl. Phys. Lett. (1)

Min Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Lalanne“Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38 (7), 800 – 804 (2002)
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Techn. B (1)

M. Mulot, S. Anand, M. Swillo, M. Qiu, and B. Jaskorzynska “Low-loss InP-based photonic crystal waveguides etched with Ar/Cl2 chemically assisted ion beam etching,” J. Vac. Sci. Techn. B 21, 900–903 (2003)
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212 (2000).
[Crossref]

Other (1)

M. Augustin, R. Iliew, H.-J. Fuchs, D. Schelle, C. Etrich, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguides,” App. Phys. Lett., in submission

Supplementary Material (2)

» Media 1: GIF (2637 KB)     
» Media 2: GIF (3461 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

3D band structure of the PC slab system (left) and a 2D effective index band structure calculation for the W3-PCWG (right). The diameter of the holes is 374 nm at a lattice pitch of 595 nm.

Fig. 2.
Fig. 2.

Transmission of a W3-PCWG double bend (3D-FDTD calculations, TE polarized excitation) for three different bend designs (unaltered bend, three holes shifted and three extra holes inserted at the bend).

Fig. 3.
Fig. 3.

(left: 1.45MB, right: 1.74MB) 3D-FDTD simulation of a 60° double bend excited at 1509 nm, where a high transmission of ~ 80% per bend are observed (cross section at the center of waveguiding layer, left original computing window, right blow-up of lower bend). Alternatively animations of higher quality can be obtained, (2.58 MB) and (3.38 MB).

Fig. 4.
Fig. 4.

SEM images of the fabricated W3-PCWG consisting of holes with a diameter of 370 nm and a depth of 1100 nm (aspect ratio of 1:3) in a hexagonal lattice of period 595 nm. The wall angle in the holes amounts to 85°.

Fig. 5.
Fig. 5.

SEM-images of the W3-PCWG double bend with the optimized (top left, right) and with the unaltered bend (bottom left). The PC consists of holes with a diameter of 360nm and a depth of 1.1 µm at a lattice pitch of 595 nm.

Fig. 6.
Fig. 6.

Measured bend efficiencies for the optimized bend in comparison with 3D-FDTD simulations.

Metrics