Abstract

We demonstrate two real-time, read-write holographic projectors of video images based on photorefractive materials. A photorefractive crystal holographically records multiple, angularly multiplexed 2D images. By sequentially reconstructing each pre-recorded image a holographic video is created. In first setup the 2D image of an LCD screen is holographicaly recorded in a photorefractive LiNbO3 crystal. In the second setup the Fourier transform of the LCD screen is recoded in the crystal. A detailed comparison of the two setups along with a number of videos is provided. The Fourier transform recording is superior in image quality compared to the direct image recording.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Holographic double-exposure interferometry in near real time with photorefractive crystals

D. Dirksen and G. von Bally
J. Opt. Soc. Am. B 11(9) 1858-1863 (1994)

Volume-holographic memory for laser threat discrimination

Mark L. DeLong, Bradley D. Duncan, and Jack H. Parker
J. Opt. Soc. Am. B 13(10) 2198-2208 (1996)

Pure phase correlator with photorefractive filter memory

M. Duelli, A. R. Pourzand, N. Collings, and R. Dändliker
Opt. Lett. 22(2) 87-89 (1997)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)
  2. H. B. Brown, “Holographic television techniques,” SPIE, Pract. Electro-Opt. Instr. Techn,  255, 151 (1980)
  3. G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
    [Crossref]
  4. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
    [Crossref]
  5. H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
    [Crossref] [PubMed]
  6. N. J. Cook, A. Carnicer, S. Vallmitjana, I. Juvells, C. M. Cartwright, and W. A. Gillespie, “Implementation of a photorefractive binary joint transform correlator,” J. Opt. Soc. Am. B,  15, 1977 (1998)
    [Crossref]
  7. A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
    [Crossref]
  8. M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
    [Crossref]
  9. E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
    [Crossref]
  10. P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)
  11. P. Smigielski, “Holographic cinematography and its applications,” SPIE Indust. Laser Interf,  746, 29 (1987)
  12. S. H. Lin, M. L. Hsieh, K. Y. Hsu, T. C. Hsieh, S. P. Lin, T. S. Yeh, L J. Hu, C. H. Lin, and H. Chang, “Photorefractive Fe:LiNbO3 crystal thin plates for optical information processing,” J. Opt. Soc. Am. B,  16, 1112 (1999).
    [Crossref]
  13. M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt,  35, 2418 (1996)
    [Crossref] [PubMed]
  14. Q. Gao and R. Kostuk, “Cross-talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open-circuit condition,” Appl. Opt,  37, 929 (1998)
    [Crossref]
  15. H. Rajbenbach, S. Bann, and J. P. Huignard, “Long-term readout of photorefractive memories by using a storage/amplification two-crystal configuration,” Opt. Lett.,  17, 1712 (1992)
    [Crossref] [PubMed]
  16. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
    [Crossref]
  17. J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
    [Crossref]
  18. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
    [Crossref]

2000 (2)

G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
[Crossref]

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

1999 (1)

1998 (3)

Q. Gao and R. Kostuk, “Cross-talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open-circuit condition,” Appl. Opt,  37, 929 (1998)
[Crossref]

N. J. Cook, A. Carnicer, S. Vallmitjana, I. Juvells, C. M. Cartwright, and W. A. Gillespie, “Implementation of a photorefractive binary joint transform correlator,” J. Opt. Soc. Am. B,  15, 1977 (1998)
[Crossref]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

1996 (3)

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt,  35, 2418 (1996)
[Crossref] [PubMed]

1992 (1)

1988 (1)

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
[Crossref]

1987 (1)

P. Smigielski, “Holographic cinematography and its applications,” SPIE Indust. Laser Interf,  746, 29 (1987)

1984 (1)

P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)

1980 (1)

H. B. Brown, “Holographic television techniques,” SPIE, Pract. Electro-Opt. Instr. Techn,  255, 151 (1980)

1973 (1)

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

1972 (1)

E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
[Crossref]

1971 (1)

M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
[Crossref]

1969 (1)

A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
[Crossref]

Albe, F.

P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)

Bann, S.

Brady, D.

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
[Crossref]

Brown, H. B.

H. B. Brown, “Holographic television techniques,” SPIE, Pract. Electro-Opt. Instr. Techn,  255, 151 (1980)

Brumm, D.B.

E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
[Crossref]

Buckles, R.G.

M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
[Crossref]

Carnicer, A.

Cartwright, C. M.

Chang, H.

Chang, T.

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

Chang, T. Y.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

Choi, S.

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

Christian, W.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

Cook, N. J.

Cox, M. E.

M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
[Crossref]

Evtuhou, V

A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
[Crossref]

Fagot, H.

P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)

Fainman, Y.

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Flory, R. E.

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

Fotakis, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Gao, Q.

Q. Gao and R. Kostuk, “Cross-talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open-circuit condition,” Appl. Opt,  37, 929 (1998)
[Crossref]

Gillespie, W. A.

Gray, M. S.

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Hannan, W. J.

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

Hong, J.

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

Hong, J. H.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

Hsiao, St. S. H.

E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
[Crossref]

Hsieh, M. L.

Hsieh, T. C.

Hsu, K. Y.

Hu, L J.

Huignard, J. P.

Jacobson, A.D.

A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
[Crossref]

Juvells, I.

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Kostuk, R.

Q. Gao and R. Kostuk, “Cross-talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open-circuit condition,” Appl. Opt,  37, 929 (1998)
[Crossref]

Lee, S. H.

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Leith, E. N.

E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
[Crossref]

Lin, C. H.

Lin, S. H.

Lin, S. P.

Lurie, M.

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

Ma, J.

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Mauduit, N.

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

McDonald, M.

M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt,  35, 2418 (1996)
[Crossref] [PubMed]

McMichael, I.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

Mok, F.

G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
[Crossref]

Neeland, J. K.

A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
[Crossref]

Neifeld, M. A.

M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt,  35, 2418 (1996)
[Crossref] [PubMed]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Pletcher, D.

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

Psaltis, D.

G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
[Crossref]

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
[Crossref]

Rajbenbach, H.

Ryan,

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

Sasaki, H.

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Smigielski, P.

P. Smigielski, “Holographic cinematography and its applications,” SPIE Indust. Laser Interf,  746, 29 (1987)

P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)

Vainos, N. A.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Vallmitjana, S.

Wagner, K.

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
[Crossref]

Whitlow, D.

M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
[Crossref]

Yeh, T. S.

Zergioti, I.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

Zhou, G.

G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
[Crossref]

App. Opt (2)

M. E. Cox, R.G. Buckles, and D. Whitlow, “Cineholomicroscopy of small animal microcirculation,” App. Opt,  10, 128(1971)
[Crossref]

E. N. Leith, D.B. Brumm, and St. S. H. Hsiao, “Holographic Cinematography,” App. Opt,  11, 2016 (1972)
[Crossref]

App. Opt. (1)

I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” App. Opt.,  35, 2375, (1996)
[Crossref]

App. Phys. Lett. (1)

A.D. Jacobson, V Evtuhou, and J. K. Neeland, “Motion picture holography,” App. Phys. Lett.,  14, 120 (1969)
[Crossref]

Appl. Opt (4)

M. A. Neifeld and M. McDonald, “Optical design for page access to volume optical media,” Appl. Opt,  35, 2418 (1996)
[Crossref] [PubMed]

Q. Gao and R. Kostuk, “Cross-talk noise and storage capacity of holographic memories with a LiNbO3 crystal in the open-circuit condition,” Appl. Opt,  37, 929 (1998)
[Crossref]

D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt,  27, 1752 (1988)
[Crossref]

H. Sasaki, N. Mauduit, J. Ma, Y. Fainman, S. H. Lee, and M. S. Gray, “Dynamic digital photorefractive memory for optoelectronic neural network learning modules,” Appl. Opt,  35, 4641, (1996)
[Crossref] [PubMed]

Appl. Phys. A: Mater. Sci. Process. (1)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A: Mater. Sci. Process. 66, 579 (1998)
[Crossref]

J. Opt. Soc. Am. B (2)

J. Soc. Motion Pic. and Television Eng. (1)

W. J. Hannan, R. E. Flory, M. Lurie, and Ryan, “Holotape: A low-cost prerecorded television system using holographic storage,” J. Soc. Motion Pic. and Television Eng.,  82, 905 (1973)

Opt. Lett. (1)

Opt. Quant. Elect (1)

G. Zhou, D. Psaltis, and F. Mok, “Holographic read-only memory,” Opt. Quant. Elect,  32, 405 (2000)
[Crossref]

Opt. Quant. Elect. (1)

J. Ma, T. Chang, S. Choi, and J. Hong, “Ruggedized digital holographic data storage with fast access,” Opt. Quant. Elect. 32, 383, (2000)
[Crossref]

SPIE High Speed Phot (1)

P. Smigielski, H. Fagot, and F. Albe, “Holographic cinematography with the help of a pulse YAG laser,” SPIE High Speed Phot,  491, 750, (1984)

SPIE Indust. Laser Interf (1)

P. Smigielski, “Holographic cinematography and its applications,” SPIE Indust. Laser Interf,  746, 29 (1987)

SPIE, Pract. Electro-Opt. Instr. Techn (1)

H. B. Brown, “Holographic television techniques,” SPIE, Pract. Electro-Opt. Instr. Techn,  255, 151 (1980)

Supplementary Material (10)

» Media 1: AVI (935 KB)     
» Media 2: AVI (862 KB)     
» Media 3: AVI (826 KB)     
» Media 4: AVI (706 KB)     
» Media 5: AVI (884 KB)     
» Media 6: AVI (943 KB)     
» Media 7: AVI (1788 KB)     
» Media 8: AVI (1034 KB)     
» Media 9: AVI (1030 KB)     
» Media 10: AVI (485 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1a.
Fig. 1a.

Direct image recording experimental setup. M1, M2 Mirrors, BS variable beamsplitter, λ/2 retardation plate, H Computer Generated Hologram (CGH), L1–L4 lenses, (fL1 =-100mm, fL2 =250mm, fL3 =200mm, fL4 =250mm), D diffuser, L5 photographic lens f=50mm, L6 phot. lens f=28mm, SF 8-pinhole spatial filter, Ch chopper, PRC photorefractive crystal LiNbO3:Fe. The object and reference beams are extraordinary polarized. The image can be projected to a CCD detector by properly adjusting lens L6. The inset shows a magnified 3D view of the combination of the 8-pinhole spatial filter and the chopper.

Fig. 1b.
Fig. 1b.

Fourier transform recording setup. M1, M2 Mirrors, BS variable beamsplitter, R λ/2 retardation plate, H Computer Generated Hologram (CGH), L1–L4 lenses, (fL1 =-100mm, fL2 =250mm, fL3 =200mm, fL4 =250mm), L5 photographic lens f=50mm, L6 photographic lens f=58mm, L7 phot. lens f=78mm, L8 phot. lens f=58mm, L9 phot. lens f=28mm, SF 8 pinhole spatial filter, Ch chopper, PRC photorefractive crystal LiNbO3:Fe. The object and reference beams are extraordinary polarized.

Fig. 2a.
Fig. 2a.

(935 Kb) Video presenting a rotating 2D propel recorded in the direct image recording setup (Figure 1a).

Fig. 2c.
Fig. 2c.

825 Kb) Video presenting a rotating 3D dodecahedron recorded in the direct image recording setup (Figure 1a).

Fig. 2e.
Fig. 2e.

(844 Kb) Video presenting a set of two rotating 2D gears recorded in the direct image recording setup (Figure 1a).

Fig. 2b.
Fig. 2b.

(862 Kb) Video presenting a rotating 2D propel recorded in the Fourier transform recording setup (Figure 1b).

Fig. 2d.
Fig. 2d.

(706 Kb) Video presenting a rotating 3D dodecahedron recorded in the Fourier transform recording setup (Figure 1b).

Fig. 2f.
Fig. 2f.

(943 Kb) Video presenting a set of two rotating 2D gears recorded in the Fourier transform recording setup (Figure 1b).

Figure 3.
Figure 3.

(1.74 Mb) Video presenting a rotating 2D propel recorded in the Fourier transform recording setup (Figure 1b). The reconstruction speed is variable so stroboscopic effects are observed.

Figure 4a.
Figure 4a.

(1 Mb) Video presenting a rotating 3D stellated dodecahedron recorded in the Fourier transform recording setup (Figure 1b).

Figure 4b.
Figure 4b.

(1 Mb) Video presenting a rotating 3D complex structure recorded in the Fourier transform recording setup (Figure 1b).

Figure 4c.
Figure 4c.

(485 Kb) Video presenting a rotating 3D lobe recorded in the Fourier transform recording setup (Figure 1b).

Metrics