Abstract

A light-driven micromanipulation system with real-time user-feedback control is used to simultaneously trap colloidal suspensions enabling a unique interactive sorting capability and arbitrary patterning of microscopic particles. The technique is based on a straightforward phase-to-intensity conversion generating multiple beam patterns for manipulation of particles in the observation plane of a microscope. Encoding of phase patterns in a spatial light modulator, which is directly controlled by a computer, allows for dynamic reconfiguration of the trapping patterns, where independent control of the position, size, shape and intensity of each beam is possible. Efficient sorting of microsphere mixtures of distinct sizes and colors using multiple optical traps is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic and T. Yamane, �??Optical trapping and manipulation of single cells using infrared laser,�?? Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  3. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg and D. Hanstrop, �??Optically driven micromachine elements,�?? Appl. Phys. Lett. 78, 547 (2001).
    [CrossRef]
  4. A. Terray, J. Oakley and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
    [CrossRef] [PubMed]
  5. A. Terray, J. Oakley and D. W. M. Marr, �??Fabrication of linear colloidal structures for microfluidic applications,�?? Appl. Phys. Lett. 81, 1555 (2002).
    [CrossRef]
  6. J. Joannopoulos, �??Self-assembly lights up,�?? Nature 414, 257 (2001).
    [CrossRef] [PubMed]
  7. R. C. Hayward, D. A. Saville and I. A. Askay, �??Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,�?? Nature 404, 56 (2000).
    [CrossRef] [PubMed]
  8. S. M. Mahurin et al., �??Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres,�?? Opt. Lett. 27, 610 (2002).
    [CrossRef]
  9. J. Knight, �??Honey, I shrunk the lab,�?? Nature 418, 474 (2002).
    [CrossRef] [PubMed]
  10. D. R. Meldrum and M. R. Holl, �??Microscale bioanalytical systems,�?? Science 297, 1197 (2002).
    [CrossRef] [PubMed]
  11. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold and S. R. Quake, �??A microfabricated fluorescence-activated cell sorter,�?? Nature Biotechnol. 17, 1109 (1999).
    [CrossRef]
  12. T. Müller et al., �??A 3D-micro electrode for handling and caging single cells and particles,�?? Biosensors Bioelectronics 14, 247 (1999).
    [CrossRef]
  13. S. C. Grover, A. G. Skirtach, R. C. Gauthier and C. P. Grover, �??Automated single-cell sorting system based on optical trapping,�?? J. Biomedical Opt. 6, 14 (2001).
    [CrossRef]
  14. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, �??Pattern formation and flow control of fine particles by laser-scanning micromanipulation,�?? Opt. Lett. 16, 1463 (1991).
    [CrossRef] [PubMed]
  15. M. P. MacDonald et al., �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101 (2002).
    [CrossRef] [PubMed]
  16. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, �??Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608 (1999).
    [CrossRef]
  17. J. Glueckstad and P. C. Mogensen, �??Optimal phase contrast in common-path interferometry,�?? Appl. Opt. 40, 268 (2001).
    [CrossRef]
  18. R. L. Eriksen, P. C. Mogensen and J. Glückstad, �??Multiple-beam optical tweezers generated by the generalized phase-contrast method,�?? Opt. Lett. 27, 267 (2002).
    [CrossRef]
  19. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
    [CrossRef] [PubMed]
  20. J. Arlt and M. Padgett, �??Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,�?? Opt. Lett. 25, 191 (2000).
    [CrossRef]
  21. P. Zemanek, A. Jonas, L. Sramek and M. Liska, �??Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,�?? Opt. Lett. 24, 1448 (1999).
    [CrossRef]
  22. J. Arlt, V. Garcés-Chávez, W. Sibbett and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239 (2002).
    [CrossRef]
  23. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia, �??Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,�?? Nature 419, 145 (2002).
    [CrossRef] [PubMed]
  24. A. O�??Neil and M. Padgett, �??Rotational control within optical tweezers by use of a rotating aperture,�?? Opt. Lett. 27, 743 (2002).
    [CrossRef]
  25. K. T. Gahagan, G. A. Swartzlander, Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827 (1996).
    [CrossRef] [PubMed]
  26. Y. Ogura, N. Shirai and J. Tanida, �??Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources,�?? Appl. Opt. 41, 5645 (2002).
    [CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. Terray, J. Oakley and D. W. M. Marr, �??Fabrication of linear colloidal structures for microfluidic applications,�?? Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg and D. Hanstrop, �??Optically driven micromachine elements,�?? Appl. Phys. Lett. 78, 547 (2001).
[CrossRef]

Biosensors Bioelectronics (1)

T. Müller et al., �??A 3D-micro electrode for handling and caging single cells and particles,�?? Biosensors Bioelectronics 14, 247 (1999).
[CrossRef]

J. Biomedical Opt. (1)

S. C. Grover, A. G. Skirtach, R. C. Gauthier and C. P. Grover, �??Automated single-cell sorting system based on optical trapping,�?? J. Biomedical Opt. 6, 14 (2001).
[CrossRef]

Nature (5)

A. Ashkin, J. M. Dziedzic and T. Yamane, �??Optical trapping and manipulation of single cells using infrared laser,�?? Nature 330, 769 (1987).
[CrossRef] [PubMed]

J. Joannopoulos, �??Self-assembly lights up,�?? Nature 414, 257 (2001).
[CrossRef] [PubMed]

R. C. Hayward, D. A. Saville and I. A. Askay, �??Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,�?? Nature 404, 56 (2000).
[CrossRef] [PubMed]

J. Knight, �??Honey, I shrunk the lab,�?? Nature 418, 474 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia, �??Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,�?? Nature 419, 145 (2002).
[CrossRef] [PubMed]

Nature Biotechnol. (1)

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold and S. R. Quake, �??A microfabricated fluorescence-activated cell sorter,�?? Nature Biotechnol. 17, 1109 (1999).
[CrossRef]

Opt. Commun. (1)

J. Arlt, V. Garcés-Chávez, W. Sibbett and K. Dholakia, �??Optical micromanipulation using a Bessel light beam,�?? Opt. Commun. 197, 239 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (9)

J. Arlt and M. Padgett, �??Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,�?? Opt. Lett. 25, 191 (2000).
[CrossRef]

A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288 (1986).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, �??Pattern formation and flow control of fine particles by laser-scanning micromanipulation,�?? Opt. Lett. 16, 1463 (1991).
[CrossRef] [PubMed]

M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, �??Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608 (1999).
[CrossRef]

P. Zemanek, A. Jonas, L. Sramek and M. Liska, �??Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,�?? Opt. Lett. 24, 1448 (1999).
[CrossRef]

K. T. Gahagan, G. A. Swartzlander, Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827 (1996).
[CrossRef] [PubMed]

R. L. Eriksen, P. C. Mogensen and J. Glückstad, �??Multiple-beam optical tweezers generated by the generalized phase-contrast method,�?? Opt. Lett. 27, 267 (2002).
[CrossRef]

S. M. Mahurin et al., �??Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres,�?? Opt. Lett. 27, 610 (2002).
[CrossRef]

A. O�??Neil and M. Padgett, �??Rotational control within optical tweezers by use of a rotating aperture,�?? Opt. Lett. 27, 743 (2002).
[CrossRef]

Science (3)

A. Terray, J. Oakley and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002).
[CrossRef] [PubMed]

D. R. Meldrum and M. R. Holl, �??Microscale bioanalytical systems,�?? Science 297, 1197 (2002).
[CrossRef] [PubMed]

M. P. MacDonald et al., �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101 (2002).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MPG (2851 KB)     
» Media 2: MPG (2104 KB)     
» Media 3: MPG (3531 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the experimental setup for implementing interactive optical manipulation of a colloidal suspension. (b) Different geometries of multiple trapping beams. (c) 10 × 10 array of annular beams for trapping of particles with refractive indices lower than that of the surrounding medium. (d) Asymmetric array of 15 × 15 traps with two distinct beam diameters. SLM phase modulation of 0 and π correspond to minimum and maximum intensity, respectively.

Fig. 2.
Fig. 2.

(MPEG, 2919 KB) Non-mechanical removal of microsphere stacking. (a) Blurred image of the topmost microsphere (5μm-diameter) indicating the presence of another particle trapped underneath. Inset: the topmost beam that trapped more than one particle has been selected by the computer “mouse” pointer. (b) Movement of the selected graphic in the directions indicated by the arrows resulting to transverse translation of the specific trapping beam. (c) Introduction of an additional trapping beam. Inset shows the graphic corresponding to the new beam positioned at the site of the ejected particle (2-μm-diameter). (d) The final configuration with an array of distinguishable particles and with one particle per trapping beam. Scale bar, 10 μm.

Fig. 3.
Fig. 3.

(MPEG, 2,154 KB) Image sequences of trapping and sorting of inhomogeneous size mixture of polystyrene beads in water solution with < 1% surfactant. (a) Dispersed beads with diameters 2 μm and 5 μm are first captured by corresponding trapping beams. The beads are held just below the upper surface of the glass chamber. The size of the beam used at each trapping site is proportional to the size of the trapped particle. (b – d) Sorting of the beads according to size. Scale bar, 10 μm.

Fig. 4.
Fig. 4.

(MPEG, 3616KB) Trapping and sorting of inhomogeneous mixture of commercially dyed polystyrene beads. All beads have a diameter of 3 μm. With the mouse-controlled movement of the corresponding trapping beams, the beads are assembled into a 3 × 3 array and subsequently segregated according to color. Scale bar, 10 μm.

Fig. 5.
Fig. 5.

A graphic demonstrating an interactive light-driven ‘lab-on-a-chip’ with multiple functionalities simultaneously programmed by a computer. It enables the user to assemble structures and control the sorting capability of light-driven pumps and valves inside the prefabricated channels of the chip. A mesh intensity pattern guides a network of particles at the topmost compartment to assemble colloidal crystal while hollow beams trap low-index particles at the middle compartment.

Metrics