Abstract

Optical components for large-aperture laser systems may contain a number of defect (damage) sites formed as a result of exposure to the propagating laser beam. When exposed to high-power laser irradiation, a number of damage sites tend to grow. In this work, we explore fluorescence microscopy and optical coherence tomography for the characterization of such defect sites. Fluorescence microscopy demonstrates the presence of a layer of highly emissive, and therefore absorbing, modified material. Optical coherence tomography can image the network of cracks formed around the core of the damage site. This information may be useful for the application of a mitigation process to prevent damage growth.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Moriya, T. Ogawa, �??Observation of dislocations in a synthetic quartz crystal by light scattering tomography,�?? Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191-200 (1980).
  2. Peizhen Deng, Jingwen Qiao, "Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST)," J. Crystal Growth 82, 579-583 (1987).
    [CrossRef]
  3. J.P. Fillard, P. Gall, A. Baroudi, A. George, J. Bonnafe, "Defect structures in InP crystals by laser scanning tomography," J. Appl. Phys. (Jpn) 26, 1255-1257 (1987).
    [CrossRef]
  4. J. Furukawa, H. Furuya, T. Shingyouji, "Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography," J. Appl. Phys. (Jpn) 32, 5178-5179 (1993).
    [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  6. J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, �??Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,�?? Neoplasia 2, 9-25 (2000).
    [CrossRef] [PubMed]
  7. J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, �??The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,�?? Polym. Compos. 22, 803-814 (2001).
    [CrossRef]
  8. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516-1518 2001.
    [CrossRef]
  9. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Vov Borczyskowski, �??Scanning confocal optical microscopy and magnetic resonance on single defect centers,�?? Science 276, 5321 (1997)
    [CrossRef]
  10. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky and J. J. De Yoreo �??Microscopic fluorescence imaging of bulk defect clusters in KH2PO4 crystals,�?? Opt. Lett. 24, 268 (1999).
    [CrossRef]
  11. S. G. Demos, M. Staggs, H. B. Radousky and J. J. De Yoreo �??Imaging of laser-induced defect reactions of individual defect nano clusters,�?? Opt. Lett. 26, 1975-1977 (2001).
    [CrossRef]
  12. E. M. Campbell, �??The National-Ignition-Facility project,�?? Fusion Technol. 26, 755-766 (1994).
  13. S. G. Demos, M. Staggs, "Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,�?? Appl. Opt. 41, 1977-1983 (2002).
    [CrossRef] [PubMed]
  14. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, H. B. Radousky, �??Surface defect generation in optical materials under high fluence laser irradiation in vacuum,�?? Electron. Lett. 36, 566-567 (2000).
    [CrossRef]
  15. D. Ehrt, P. Ebeling, U. Natura, �??UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,�?? J. Non-Cryst. Solids 263, 240-250 (2000).
    [CrossRef]
  16. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, P. J. Wegner, �??Growth of laser initiated damage in fused silica at 351-nm,�?? G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, Eds., SPIE, 4347, 468 (2000).
    [CrossRef]
  17. S. G. Demos, M. Staggs, M. R. Kozlowski, �??Investigation of processes leading to damage growth in optical materials for large-aperture lasers,�?? Appl. Opt. 41, 3628-3633 (2002).
    [CrossRef] [PubMed]
  18. L. Skuja, �??Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,�?? J. Non-Cryst. Solids 239, 16-48 (1998).
    [CrossRef]
  19. C.D. Marshall, J. A. Speth, S. A. Payne, �??Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,�?? J. Non-Cryst. Solids 212, 59-73 (1997).
    [CrossRef]
  20. T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, �??Visible photoluminescence in Si+- implanted silica glass,�?? J. Appl. Phys. 75, 7779-7783 (1994).
    [CrossRef]
  21. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, Y. Ohki, �??Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,�?? J. Appl. Phys. 80, 3513-3517 (1996).
    [CrossRef]
  22. M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, H. Misawa, �??Transmission and photoluminescence images of three-dimensional memory in vitreous silica,�?? Phys. Rev. B 60, 9959 (1999).
  23. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, �??Nanosecond-to-femptosecond laser induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749 (1996).
    [CrossRef]
  24. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, �??Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass,�?? Appl. Opt. 38, 6892 (1999).
    [CrossRef]
  25. M. Adda-Bedia, R. Arias, M. B. Amar, F. Lund, �??Dynamic instability of brittle fracture,�?? Phys. Rev. Lett. 82, 2314 (1999).
    [CrossRef]
  26. N. Bloembergen, �??Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,�?? Appl. Opt. 12, 661 (1973).

Appl. Opt. (4)

Electron. Lett. (1)

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, H. B. Radousky, �??Surface defect generation in optical materials under high fluence laser irradiation in vacuum,�?? Electron. Lett. 36, 566-567 (2000).
[CrossRef]

Fusion Technol. (1)

E. M. Campbell, �??The National-Ignition-Facility project,�?? Fusion Technol. 26, 755-766 (1994).

J. Appl. Phys. (2)

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, �??Visible photoluminescence in Si+- implanted silica glass,�?? J. Appl. Phys. 75, 7779-7783 (1994).
[CrossRef]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, Y. Ohki, �??Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,�?? J. Appl. Phys. 80, 3513-3517 (1996).
[CrossRef]

J. Appl. Phys. (Jpn) (2)

J.P. Fillard, P. Gall, A. Baroudi, A. George, J. Bonnafe, "Defect structures in InP crystals by laser scanning tomography," J. Appl. Phys. (Jpn) 26, 1255-1257 (1987).
[CrossRef]

J. Furukawa, H. Furuya, T. Shingyouji, "Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography," J. Appl. Phys. (Jpn) 32, 5178-5179 (1993).
[CrossRef]

J. Crystal Growth (1)

Peizhen Deng, Jingwen Qiao, "Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST)," J. Crystal Growth 82, 579-583 (1987).
[CrossRef]

J. Non-Cryst. Solids (3)

D. Ehrt, P. Ebeling, U. Natura, �??UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,�?? J. Non-Cryst. Solids 263, 240-250 (2000).
[CrossRef]

L. Skuja, �??Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,�?? J. Non-Cryst. Solids 239, 16-48 (1998).
[CrossRef]

C.D. Marshall, J. A. Speth, S. A. Payne, �??Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,�?? J. Non-Cryst. Solids 212, 59-73 (1997).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, �??Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,�?? Neoplasia 2, 9-25 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Philosophical Magazine A (1)

K. Moriya, T. Ogawa, �??Observation of dislocations in a synthetic quartz crystal by light scattering tomography,�?? Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191-200 (1980).

Phys. Rev. B (2)

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, H. Misawa, �??Transmission and photoluminescence images of three-dimensional memory in vitreous silica,�?? Phys. Rev. B 60, 9959 (1999).

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, �??Nanosecond-to-femptosecond laser induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

M. Adda-Bedia, R. Arias, M. B. Amar, F. Lund, �??Dynamic instability of brittle fracture,�?? Phys. Rev. Lett. 82, 2314 (1999).
[CrossRef]

Polym. Compos. (1)

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, �??The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,�?? Polym. Compos. 22, 803-814 (2001).
[CrossRef]

Proc. SPIE (1)

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, P. J. Wegner, �??Growth of laser initiated damage in fused silica at 351-nm,�?? G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, Eds., SPIE, 4347, 468 (2000).
[CrossRef]

Science (2)

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Vov Borczyskowski, �??Scanning confocal optical microscopy and magnetic resonance on single defect centers,�?? Science 276, 5321 (1997)
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Emission spectra measured at three different locations within a surface damage site obtained using a micro-spectroscopy system and 351-nm excitation.

Fig. 2.
Fig. 2.

Images of a 930μm × 900 μm section of a surface damage site. a) Light scattering image. b) The fluorescence image under 351-nm excitation using a 420-nm long wavelength pass filter. c) Ratio image obtained from division of the 650-nm over 560-nm emission images.

Fig. 3.
Fig. 3.

OCT image of a 2000 μm wide by 612 μm deep section of a laser-induced damage site.

Metrics