Abstract

Optical components for large-aperture laser systems may contain a number of defect (damage) sites formed as a result of exposure to the propagating laser beam. When exposed to high-power laser irradiation, a number of damage sites tend to grow. In this work, we explore fluorescence microscopy and optical coherence tomography for the characterization of such defect sites. Fluorescence microscopy demonstrates the presence of a layer of highly emissive, and therefore absorbing, modified material. Optical coherence tomography can image the network of cracks formed around the core of the damage site. This information may be useful for the application of a mitigation process to prevent damage growth.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Moriya and T. Ogawa, “Observation of dislocations in a synthetic quartz crystal by light scattering tomography,” Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191–200 (1980).
  2. Peizhen Deng and Jingwen Qiao, Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST), J. Crystal Growth 82, 579–583 (1987).
    [Crossref]
  3. J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
    [Crossref]
  4. J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
    [Crossref]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  6. J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [Crossref] [PubMed]
  7. J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
    [Crossref]
  8. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–15182001.
    [Crossref]
  9. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
    [Crossref]
  10. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo “Microscopic fluorescence imagingof bulk defect clusters in KH2PO4 crystals,” Opt. Lett. 24, 268 (1999).
    [Crossref]
  11. S. G. Demos, M. Staggs, H. B. Radousky, and J. J. De Yoreo “Imaging of laser-induced defect reactions of individual defect nano clusters,” Opt. Lett. 26, 1975–1977 (2001).
    [Crossref]
  12. E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).
  13. S. G. Demos and M. Staggs, Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt. 41, 1977–1983 (2002).
    [Crossref] [PubMed]
  14. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
    [Crossref]
  15. D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
    [Crossref]
  16. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
    [Crossref]
  17. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661 (1973).
    [Crossref] [PubMed]
  18. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
    [Crossref] [PubMed]
  19. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [Crossref]
  20. C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
    [Crossref]
  21. T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
    [Crossref]
  22. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
    [Crossref]
  23. M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).
  24. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
    [Crossref]
  25. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass,” Appl. Opt. 38, 6892 (1999).
    [Crossref]
  26. M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
    [Crossref]

2002 (2)

2001 (3)

2000 (4)

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
[Crossref]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

1999 (4)

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo “Microscopic fluorescence imagingof bulk defect clusters in KH2PO4 crystals,” Opt. Lett. 24, 268 (1999).
[Crossref]

F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass,” Appl. Opt. 38, 6892 (1999).
[Crossref]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

1997 (2)

C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
[Crossref]

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

1994 (2)

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

1993 (1)

J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1987 (2)

Peizhen Deng and Jingwen Qiao, Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST), J. Crystal Growth 82, 579–583 (1987).
[Crossref]

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

1980 (1)

K. Moriya and T. Ogawa, “Observation of dislocations in a synthetic quartz crystal by light scattering tomography,” Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191–200 (1980).

1973 (1)

Adda-Bedia, M.

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

Amar, M. B.

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

Arias, R.

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

Baroudi, A.

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

Bloembergen, N.

Bonnafe, J.

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

Boppart, S.

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Brezinski, M.

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Burnham, A.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Burns, S. J.

Campbell, E. M.

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Dahmani, F.

De Yoreo, J. J.

Demos, S. G.

Deng, Peizhen

Peizhen Deng and Jingwen Qiao, Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST), J. Crystal Growth 82, 579–583 (1987).
[Crossref]

Donohue, E. E.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Drabenstedt, A.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Dunkers, J. P.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
[Crossref]

Ehrt, D.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
[Crossref]

Feit, M. D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Fillard, J.P.

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

Fleury, L.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Flynn, K. M.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Fujimoto, J. G.

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–15182001.
[Crossref]

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujita, T.

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

Furukawa, J.

J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
[Crossref]

Furuya, H.

J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
[Crossref]

Gall, P.

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

George, A.

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gruber, A.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hrubesh, L. W.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Ippen, E. P.

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Itoh, N.

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

Juodkazis, S.

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

Kowalevicz, A. M.

Kozlowski, M. R.

Kozlowski, M.R.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Lambropoulos, J. C.

Li, X.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lund, F.

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

Marshall, C.D.

C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
[Crossref]

Matsuo, S.

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

Milam, D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Minoshima, K.

Misawa, H.

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

Molander, W. A.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Moriya, K.

K. Moriya and T. Ogawa, “Observation of dislocations in a synthetic quartz crystal by light scattering tomography,” Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191–200 (1980).

Nagasawa, K.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Nakao, S.

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

Natura, U.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
[Crossref]

Neeb, P. C.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Norton, M.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Norton, M. A.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Ogawa, T.

K. Moriya and T. Ogawa, “Observation of dislocations in a synthetic quartz crystal by light scattering tomography,” Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191–200 (1980).

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Papernov, S.

Parnas, R. S.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Payne, S. A.

C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Peterson, R. C.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Phelan, F. R.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Qiao, Jingwen

Peizhen Deng and Jingwen Qiao, Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST), J. Crystal Growth 82, 579–583 (1987).
[Crossref]

Radousky, H. B.

S. G. Demos, M. Staggs, H. B. Radousky, and J. J. De Yoreo “Imaging of laser-induced defect reactions of individual defect nano clusters,” Opt. Lett. 26, 1975–1977 (2001).
[Crossref]

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo “Microscopic fluorescence imagingof bulk defect clusters in KH2PO4 crystals,” Opt. Lett. 24, 268 (1999).
[Crossref]

Rubenchic, A. M.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Runkel, M.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Saitoh, K.

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

Sakurai, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Sanders, D. P.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Schmid, A. W.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sell, W. D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Shimizu-Iwayama, T.K.F.

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

Shingyouji, T.

J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

Speth, J. A.

C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
[Crossref]

Staggs, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Sun, H.

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tietz, C.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Vov Borczyskowski, C.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Wantanabe, M.

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

Wegner, P.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Wegner, P. J.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Wrachtrup, J.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

Wu, Z.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Yan, M.

Zeller, L.

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Zimba, C. G.

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Appl. Opt. (4)

Electron. Lett. (1)

S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
[Crossref]

Fusion Technol. (1)

E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).

J. Appl. Phys. (2)

T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75, 7779–7783 (1994).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,” J. Appl. Phys. 80, 3513–3517 (1996).
[Crossref]

J. Crystal Growth (1)

Peizhen Deng and Jingwen Qiao, Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST), J. Crystal Growth 82, 579–583 (1987).
[Crossref]

J. Non-Cryst. Solids (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[Crossref]

C.D. Marshall, J. A. Speth, and S. A. Payne, “Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,” J. Non-Cryst. Solids 212, 59–73 (1997).
[Crossref]

J. of Applied Physics (Jpn) (2)

J.P. Fillard, P. Gall, A. Baroudi, A. George, and J. Bonnafe, Defect structures in InP crystals by laser scanning tomography, J. of Applied Physics (Jpn) 26, 1255–1257 (1987).
[Crossref]

J. Furukawa, H. Furuya, and T. Shingyouji, Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography. J. of Applied Physics (Jpn) 32, 5178–5179 (1993).
[Crossref]

J. of Non-Cryst. Solids (1)

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. of Non-Cryst. Solids 263, 240–250 (2000).
[Crossref]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, “Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[Crossref] [PubMed]

Opt. Lett. (3)

Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) (1)

K. Moriya and T. Ogawa, “Observation of dislocations in a synthetic quartz crystal by light scattering tomography,” Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191–200 (1980).

Phys. Rev. B. (2)

M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, and H. Misawa, “Transmission and photoluminescence images of three-dimensional memory in vitreous silica,” Phys. Rev. B. 60, 9959 (1999).

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femptosecond laser induced breakdown in dielectrics,” Phys. Rev. B. 53, 1749 (1996).
[Crossref]

Phys. Rev. Lett. (1)

M. Adda-Bedia, R. Arias, M. B. Amar, and F. Lund, “Dynamic instability of brittle fracture,” Phys. Rev. Lett. 82, 2314 (1999).
[Crossref]

Polym. Compos. (1)

J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, “The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,” Polym. Compos. 22, 803–814 (2001).
[Crossref]

Science (2)

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Vov Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 5321 (1997)
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

SPIE (1)

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351-nm,” G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, Eds., SPIE,  4347, 468 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Emission spectra measured at three different locations within a surface damage site obtained using a micro-spectroscopy system and 351-nm excitation.

Fig. 2.
Fig. 2.

Images of a 930μm × 900 μm section of a surface damage site. a) Light scattering image. b) The fluorescence image under 351-nm excitation using a 420-nm long wavelength pass filter. c) Ratio image obtained from division of the 650-nm over 560-nm emission images.

Fig. 3.
Fig. 3.

OCT image of a 2000 μm wide by 612 μm deep section of a laser-induced damage site.

Metrics