Abstract

Two-dimensional fluorescence and lasing images of a Rhodamine-6G doped water spray are observed with color photography. The lasing microdroplets are identified by their two reciprocal lasing spots. The microdroplet sizes are measured using the digitized images. The measured mean microdroplet diameter is 69.7 μm with a standard deviation of 23.1 μm. The measured microdroplet size distribution compares favorably with the normal Gaussian size distribution.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Mugele and H. D. Evans: �??Droplet Size Distribution in Sprays,�?? Ind. Eng. Chem. 43, 1317-1324 (1951).
    [CrossRef]
  2. M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, �??An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,�?? Fuel 77, 425-435 (1998).
  3. J. H. Koo and E. D. Hirleman, �??Review of Principles of Optical Techniques for Particle Size Measurements,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3-32.
    [CrossRef]
  4. G. A. Ruff and G. M. Faeth, �??Nonintrusive Measurements of the Structure of Dense Sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263-296.
  5. D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part I,�?? Appl. Opt. 18, 1632-1645 (1979); D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part II,�?? Appl. Opt. 18, 1646-1652 (1979).
    [CrossRef] [PubMed]
  6. J. S. Batchelder and M. A. Taubenblatt, �??Interferometric detection of forward scattered light from small particles,�?? Appl. Phys. Lett. 55, 215-217 (1989).
    [CrossRef]
  7. M. Golombok, V. Morin, and C. Mounaim-Rousselle, �??Droplet diameter and the interference fringes between reflected and refracted light,�?? J. Phys. D: Appl. Phys. 31, 59-62 (1998).
    [CrossRef]
  8. W. D. Bachalo, �??Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,�?? Appl. Opt. 19, 363-370 (1980).
    [CrossRef] [PubMed]
  9. A. Mansour and N. Chigier, �??Air-blast atomization of non-Newtonian liquids,�?? J. Non-Newtonian liquids 58, 161-194 (1995).
    [CrossRef]
  10. D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, �??Light scattering from deformed droplets and droplets with inclusions. 1. Experimental results,�?? Appl. Opt. 39, 5023-5030 (2000).
    [CrossRef]
  11. D. C. Herpfer and San-Mou Jeng, �??Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,�?? AIAA J. 35, 127-132 (1997).
    [CrossRef]
  12. B. D. Stojkovic and V. Sick, "Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques," Appl. Phys. B 73, 75-83 (2001).
    [CrossRef]
  13. R. A. Dobbins and G. S. Jizmagian, �??Particle size measurements based on the use of mean scattering cross sections,�?? J. Opt. Soc. Am. 56, 1351-1354 (1966).
    [CrossRef]
  14. R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, "Optical Diagnostic for Diesel-Sprays with µs-Time Resolution," SAE paper 910727, (1991).
  15. N. L. Swanson, B. D. Billard, and T. L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999).
    [CrossRef]
  16. R. A. Dobbins, L. Crocco, and I. Glassman, �??Measurement of mean particle sizes of sprays from diffractively scattered light,�?? AIAA J. 1, 1882-1886 (1963).
    [CrossRef]
  17. J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, "Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe)," J. Atmospheric Oceanic Technol. 15, 1077-1090 (1998).
    [CrossRef]
  18. A. V. Korolev, J. W. Strapp, and G. A. Isaac, �??Evaluation of the accuracy of PMS optical array probes,�?? J. Atmospheric Oceanic Tech. 15, 708-720 (1998).
    [CrossRef]
  19. T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, �??Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,�?? J. Aerosol Sci. 31, 35-50 (1999).
    [CrossRef]
  20. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, �??Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,�?? Phys. Rev. Lett. 86, 4163-4166 (2001).
    [CrossRef] [PubMed]
  21. N. Dombrowski and R. P. Fraser, "A Photographic Investigation into the Disintegration of Liquid Sheets," Phil. Trans. A 247, 101-130 (1954).
    [CrossRef]
  22. H. Malot and J. B. Blaisot, �??Droplet size distribution and sphericity measurements of low-density sprays through image analysis,�?? Part. Syst. Charact. 17, 146-158 (2000).
    [CrossRef]
  23. T. Kamimoto, H. Kobayashi, and S. Matsuoka, "A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion," SAE paper 811004 (1981).
  24. B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, �??Fluid particle sizing using a fully automated optical imaging system,�?? Opt. Eng. 23, 561-566 (1984).
  25. C. R. Tuck, M. C. Butler and P. C. H Miller, �??Techniques for measurement of droplet size and velocity distributions in agricultural sprays,�?? J. Crop Protection 7, 619-628 (1997).
    [CrossRef]
  26. K. D. Ahlers and D. R. Alexander, �??Microcomputer based digital image processing system developed to count and size laser-generated small particle images,�?? Opt. Eng. 24, 1060-1065 (1985).
  27. A. R. Glover, S. M. Skippon, and R. D. Boyle, �??Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,�?? Appl. Opt. 34, 8409-8421 (1995).
    [CrossRef] [PubMed]
  28. R. Albert and P. V. Farrell, �??Droplet sizing using the Shifrin inversion,�?? J. Fluids Eng. 116, 357-362 (1994).
    [CrossRef]
  29. K.R. Browne, I.M. Partridge, and G. Greeves, "Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine," SAE paper 860223 (1986).
  30. N. Chigier, "Optical Imaging of Sprays," Prog. Energy Combust. Sci. 17, 211-262 (1991).
    [CrossRef]
  31. L. A. Melton and J.F. Verdieck, "Vapor/Liquid Visualization for Fuel Sprays," Combust. Sci. and Tech. 42, 217-222 (1985).
    [CrossRef]
  32. M. C. Jermy and D. A. Greenhalgh, �??Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,�?? Appl. Phys. B 71, 703-710 (2000).
    [CrossRef]
  33. W. P. Acker, A. Serpengüzel, R. K. Chang, and S. C. Hill, "Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination," Appl. Phys. B 51, 9-16 (1990).
    [CrossRef]
  34. M. Golombok and D. B. Pye, �??Droplet sizing in fuel injections by stimulated Raman scattering,�?? Opt. Lett. 15, 872-874 (1990).
    [CrossRef] [PubMed]
  35. L. A. Melton, "Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor," Appl. Opt. 22, 2224-2226 (1983).
    [CrossRef] [PubMed]
  36. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov , �??Efficient plastic-host dye lasers,�?? J. Opt. Soc. Am. B 2, 1208-1031 (1985).
    [CrossRef]
  37. C.-N. Yeh, H. Kosaka, and T. Kamimoto, �??Measurement of drop sizes in unsteady dense sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297-308.
  38. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
    [CrossRef] [PubMed]
  39. Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).
  40. P. R. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, San Diego, 1993).
  41. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).
  42. J. Rarity and C. Weisbuch, Eds., Microcavities and Photonic Bandgaps: Physics and Applications, (Kluver, Dordrecht, 1996).
    [CrossRef]
  43. E. M. Purcell, "Spontaneous Emission Probabilities at Radio Frequencies," Phys. Rev. 69, 681 (1946).
  44. P. W. Milloni and P. L. Knight, "Spontaneous emission between mirrors," Opt. Commun. 9, 119 - 122 (1973).
    [CrossRef]
  45. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, "Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity," Phys. Rev. Lett. 59, 2955 - 2958 (1987).
    [CrossRef] [PubMed]
  46. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities," Appl. Phys. Lett. 57, 2814 - 2816 (1990).
    [CrossRef]
  47. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, "Modification of spontaneous emission rate in planar dielectric microstructures," Phys. Rev. A 44, 669 - 681 (1991).
  48. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, "Strong Coupling Phenomena in Quantum Microcavity Structures," Semiconductor Science Technol. 13, 645 - 669 (1998).
    [CrossRef]
  49. Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, "Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations," Phys Rev. Lett. 64, 2499 - 2502 (1990).
    [CrossRef] [PubMed]
  50. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314 - 3317 (1992).
    [CrossRef] [PubMed]
  51. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, "Microcavity exciton-polariton splitting in the linear regime," Phys. Rev. B 51, 14437 - 14447 (1995).
    [CrossRef]
  52. D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, "Pixelated multicolor microcavity displays," IEEE J. Select. Topics Quantum Electron. 4, 113 (1998).
    [CrossRef]
  53. H. Yokoyama and K. Ujihara, Eds., Spontaneous emission and laser oscillation in microcavities, (CRC Press, Boca Raton, 1995).
  54. M. S. �?nlü and S. Strite, "Resonant Cavity Enhanced Photonic Devices," J. Appl. Phys. 78, 607 (1995).
    [CrossRef]
  55. H. Benisty, H. De Neve, and C. Weisbuch, "Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends," IEEE J. Select. Top. Quantum Electron. 34, 1612 (1998).
    [CrossRef]
  56. R. E. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems," Solid State Commun. 92 149 (1994).
    [CrossRef]
  57. E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, "Resonant Cavity Light Emitting Diode," Appl. Phys. Lett. 60, 921 (1992).
    [CrossRef]
  58. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, "Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities," Opt. Quantum Electron. 24, S245 (1992).
    [CrossRef]
  59. Y. Yamamoto, S. Machida, and G. Björk, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev A 44 657 (1991).
    [CrossRef] [PubMed]
  60. J.V. Sandusky and S. R. J. Brueck, "Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure," Appl. Phys. Lett. 69, 3993 (1996).
    [CrossRef]
  61. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  62. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic Wire Laser," Phys. Rev. Lett. 75, 2678 (1995).
    [CrossRef] [PubMed]
  63. R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  64. P. W. Barber and R. K. Chang, Eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).
  65. A. Ashkin, and J. M. Dziedzic, "Observation of Resonances in the Radiation Pressure on Dielectric Spheres," Phys. Rev. Lett. 38, 1351-1354 (1977).
    [CrossRef]
  66. R. K. Chang, "Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects," in Advances in Laser Science-II, M. Lapp, W.C. Stwalley, and G. A. Kenny-Wallace, eds. (American Institute of Physics, New York, 1987), pp. 509-515.
  67. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of Structure Resonances in the Fluorescence Spectra from Microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
    [CrossRef]
  68. D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R. K. Chang, "Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers," Appl. Opt. 26, 1348-1356 (1987).
    [CrossRef] [PubMed]
  69. S. C. Ching, H. M. Lai, and K. Young, "Dielectric Microspheres as Optical Cavities: Thermal Spectrum and Density of States," J. Opt. Soc. Am. B 4, 1995-2003 (1987).
    [CrossRef]
  70. S. -X. Qian, J. B. Snow, H. -M. Tzeng, and R. K. Chang, "Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission," Science 231, 486-488 (1986).
    [CrossRef] [PubMed]
  71. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  72. S. C. Hill, and R. E. Benner, "Morphology-Dependent Resonances associated with Stimulated Processes in Microspheres," J. Opt. Soc. Am. B 3, 1509-1514 (1986).
    [CrossRef]
  73. J. -Z. Zhang, D. H. Leach, and R. K. Chang, "Photon Lifetime within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering," Opt. Lett. 13, 270-272 (1988).
    [CrossRef] [PubMed]
  74. P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, "Efficient Automated Algorithm for the Sizing of Dielectric Microspheres using the Resonance Spectrum," J. Opt. Soc. Am. A 1, 1181-1186 (1984).
    [CrossRef]
  75. H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets," Opt. Commun. 77, 407-410 (1990).
    [CrossRef]
  76. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350-351.
  77. A. S. Kwok, C. F. Wood, and R. K. Chang, "Fluorescence Imaging of CO2 Laser-Heated Droplets," Opt. Lett. 15, 664-666 (1990).
    [CrossRef] [PubMed]
  78. R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics, (Irwin, Homewood, Illinois,1987) pp. 1025-1032
  79. J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers, (McGraw-Hill, New York, 1970) pp. 478-480.

AIAA J.

R. A. Dobbins, L. Crocco, and I. Glassman, �??Measurement of mean particle sizes of sprays from diffractively scattered light,�?? AIAA J. 1, 1882-1886 (1963).
[CrossRef]

D. C. Herpfer and San-Mou Jeng, �??Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,�?? AIAA J. 35, 127-132 (1997).
[CrossRef]

Appl. Opt.

D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part I,�?? Appl. Opt. 18, 1632-1645 (1979); D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part II,�?? Appl. Opt. 18, 1646-1652 (1979).
[CrossRef] [PubMed]

W. D. Bachalo, �??Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,�?? Appl. Opt. 19, 363-370 (1980).
[CrossRef] [PubMed]

L. A. Melton, "Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor," Appl. Opt. 22, 2224-2226 (1983).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R. K. Chang, "Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers," Appl. Opt. 26, 1348-1356 (1987).
[CrossRef] [PubMed]

N. L. Swanson, B. D. Billard, and T. L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999).
[CrossRef]

A. R. Glover, S. M. Skippon, and R. D. Boyle, �??Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,�?? Appl. Opt. 34, 8409-8421 (1995).
[CrossRef] [PubMed]

A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
[CrossRef] [PubMed]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, �??Light scattering from deformed droplets and droplets with inclusions. 1. Experimental results,�?? Appl. Opt. 39, 5023-5030 (2000).
[CrossRef]

Appl. Phys. B

B. D. Stojkovic and V. Sick, "Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques," Appl. Phys. B 73, 75-83 (2001).
[CrossRef]

M. C. Jermy and D. A. Greenhalgh, �??Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,�?? Appl. Phys. B 71, 703-710 (2000).
[CrossRef]

W. P. Acker, A. Serpengüzel, R. K. Chang, and S. C. Hill, "Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination," Appl. Phys. B 51, 9-16 (1990).
[CrossRef]

Appl. Phys. Lett.

J.V. Sandusky and S. R. J. Brueck, "Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure," Appl. Phys. Lett. 69, 3993 (1996).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

J. S. Batchelder and M. A. Taubenblatt, �??Interferometric detection of forward scattered light from small particles,�?? Appl. Phys. Lett. 55, 215-217 (1989).
[CrossRef]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities," Appl. Phys. Lett. 57, 2814 - 2816 (1990).
[CrossRef]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, "Resonant Cavity Light Emitting Diode," Appl. Phys. Lett. 60, 921 (1992).
[CrossRef]

Combust. Sci. and Tech.

L. A. Melton and J.F. Verdieck, "Vapor/Liquid Visualization for Fuel Sprays," Combust. Sci. and Tech. 42, 217-222 (1985).
[CrossRef]

Fuel

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, �??An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,�?? Fuel 77, 425-435 (1998).

IEEE J. Select. Topics Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends," IEEE J. Select. Top. Quantum Electron. 34, 1612 (1998).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, "Pixelated multicolor microcavity displays," IEEE J. Select. Topics Quantum Electron. 4, 113 (1998).
[CrossRef]

Ind. Eng. Chem.

R. A. Mugele and H. D. Evans: �??Droplet Size Distribution in Sprays,�?? Ind. Eng. Chem. 43, 1317-1324 (1951).
[CrossRef]

J. Aerosol Sci.

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, �??Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,�?? J. Aerosol Sci. 31, 35-50 (1999).
[CrossRef]

J. Appl. Phys.

M. S. �?nlü and S. Strite, "Resonant Cavity Enhanced Photonic Devices," J. Appl. Phys. 78, 607 (1995).
[CrossRef]

J. Atmospheric Oceanic Technol.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, "Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe)," J. Atmospheric Oceanic Technol. 15, 1077-1090 (1998).
[CrossRef]

J. Atmospheric Oceanic Tech.

A. V. Korolev, J. W. Strapp, and G. A. Isaac, �??Evaluation of the accuracy of PMS optical array probes,�?? J. Atmospheric Oceanic Tech. 15, 708-720 (1998).
[CrossRef]

J. Crop Protection

C. R. Tuck, M. C. Butler and P. C. H Miller, �??Techniques for measurement of droplet size and velocity distributions in agricultural sprays,�?? J. Crop Protection 7, 619-628 (1997).
[CrossRef]

J. Fluids Eng.

R. Albert and P. V. Farrell, �??Droplet sizing using the Shifrin inversion,�?? J. Fluids Eng. 116, 357-362 (1994).
[CrossRef]

J. Non-Newtonian liquids

A. Mansour and N. Chigier, �??Air-blast atomization of non-Newtonian liquids,�?? J. Non-Newtonian liquids 58, 161-194 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

M. Golombok, V. Morin, and C. Mounaim-Rousselle, �??Droplet diameter and the interference fringes between reflected and refracted light,�?? J. Phys. D: Appl. Phys. 31, 59-62 (1998).
[CrossRef]

Opt. Commun.

P. W. Milloni and P. L. Knight, "Spontaneous emission between mirrors," Opt. Commun. 9, 119 - 122 (1973).
[CrossRef]

H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets," Opt. Commun. 77, 407-410 (1990).
[CrossRef]

Opt. Eng.

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, �??Fluid particle sizing using a fully automated optical imaging system,�?? Opt. Eng. 23, 561-566 (1984).

K. D. Ahlers and D. R. Alexander, �??Microcomputer based digital image processing system developed to count and size laser-generated small particle images,�?? Opt. Eng. 24, 1060-1065 (1985).

Opt. Lett.

Opt. Quantum Electron.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, "Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities," Opt. Quantum Electron. 24, S245 (1992).
[CrossRef]

Part. Syst. Charact.

H. Malot and J. B. Blaisot, �??Droplet size distribution and sphericity measurements of low-density sprays through image analysis,�?? Part. Syst. Charact. 17, 146-158 (2000).
[CrossRef]

Phil. Trans. A

N. Dombrowski and R. P. Fraser, "A Photographic Investigation into the Disintegration of Liquid Sheets," Phil. Trans. A 247, 101-130 (1954).
[CrossRef]

Phys Rev. Lett.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, "Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations," Phys Rev. Lett. 64, 2499 - 2502 (1990).
[CrossRef] [PubMed]

Phys. Rev A

Y. Yamamoto, S. Machida, and G. Björk, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev A 44 657 (1991).
[CrossRef] [PubMed]

Phys. Rev.

E. M. Purcell, "Spontaneous Emission Probabilities at Radio Frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. A

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, "Modification of spontaneous emission rate in planar dielectric microstructures," Phys. Rev. A 44, 669 - 681 (1991).

Phys. Rev. B

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, "Microcavity exciton-polariton splitting in the linear regime," Phys. Rev. B 51, 14437 - 14447 (1995).
[CrossRef]

Phys. Rev. Lett.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314 - 3317 (1992).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, "Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity," Phys. Rev. Lett. 59, 2955 - 2958 (1987).
[CrossRef] [PubMed]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, �??Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,�?? Phys. Rev. Lett. 86, 4163-4166 (2001).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of Structure Resonances in the Fluorescence Spectra from Microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

A. Ashkin, and J. M. Dziedzic, "Observation of Resonances in the Radiation Pressure on Dielectric Spheres," Phys. Rev. Lett. 38, 1351-1354 (1977).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic Wire Laser," Phys. Rev. Lett. 75, 2678 (1995).
[CrossRef] [PubMed]

Prog. Energy Combust. Sci.

N. Chigier, "Optical Imaging of Sprays," Prog. Energy Combust. Sci. 17, 211-262 (1991).
[CrossRef]

SAE paper

T. Kamimoto, H. Kobayashi, and S. Matsuoka, "A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion," SAE paper 811004 (1981).

Science

S. -X. Qian, J. B. Snow, H. -M. Tzeng, and R. K. Chang, "Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Semiconductor Science Technol.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, "Strong Coupling Phenomena in Quantum Microcavity Structures," Semiconductor Science Technol. 13, 645 - 669 (1998).
[CrossRef]

Solid State Commun.

R. E. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems," Solid State Commun. 92 149 (1994).
[CrossRef]

Other

H. Yokoyama and K. Ujihara, Eds., Spontaneous emission and laser oscillation in microcavities, (CRC Press, Boca Raton, 1995).

Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).

P. R. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, San Diego, 1993).

Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

J. Rarity and C. Weisbuch, Eds., Microcavities and Photonic Bandgaps: Physics and Applications, (Kluver, Dordrecht, 1996).
[CrossRef]

J. H. Koo and E. D. Hirleman, �??Review of Principles of Optical Techniques for Particle Size Measurements,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3-32.
[CrossRef]

G. A. Ruff and G. M. Faeth, �??Nonintrusive Measurements of the Structure of Dense Sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263-296.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

C.-N. Yeh, H. Kosaka, and T. Kamimoto, �??Measurement of drop sizes in unsteady dense sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297-308.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350-351.

R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics, (Irwin, Homewood, Illinois,1987) pp. 1025-1032

J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers, (McGraw-Hill, New York, 1970) pp. 478-480.

K.R. Browne, I.M. Partridge, and G. Greeves, "Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine," SAE paper 860223 (1986).

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, "Optical Diagnostic for Diesel-Sprays with µs-Time Resolution," SAE paper 910727, (1991).

R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

P. W. Barber and R. K. Chang, Eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).

R. K. Chang, "Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects," in Advances in Laser Science-II, M. Lapp, W.C. Stwalley, and G. A. Kenny-Wallace, eds. (American Institute of Physics, New York, 1987), pp. 509-515.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The schematic of the equatorial plane of the microdroplet showing the focusing effect of the microdroplet with high intensity pump regions and the counter-propagating morphology dependent resonances. The pump input laser is shown in green, the fluorescing microdroplet is shown in yellow, and the counterpropagating and lasing MDR’s are shown in orange-red. The two high intensity spots in the illuminated and shadow side are indicated by green ellipses.

Fig. 2.
Fig. 2.

The experimental setup used to image the spray. A laser sheet illuminates the spray emerging form the hollow-cone nozzle. The spray is imaged through a filter onto the camera.

Fig. 3.
Fig. 3.

The experimentally obtained images of the single lasing microdroplets in the (a-c) four times and (b-d) two times magnified images of the Rhodamine-6G doped water spray. Notice the two reciprocal lasing spots corresponding to the two counter-propagating lasing beams. In Fig. 3 (f) there are two sets of perpendicular lasing modes.

Fig. 4.
Fig. 4.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 5.
Fig. 5.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 6.
Fig. 6.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 7.
Fig. 7.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 8.
Fig. 8.

The histogram plot of the number of microdroplets and the respective normal Gaussian fit as a function of the microdroplet diameter.

Fig. 9.
Fig. 9.

The plot of the cumulative number of microdroplets and the respective normal Gaussian CDF as a function of the microdroplet diameter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p ( x ) = 1 σ 2 π exp ( 1 2 ( d μ σ ) 2 ) .
F ( x ) = 1 σ 2 π + exp ( 1 2 ( d μ σ ) 2 ) dx .

Metrics