Abstract

We report on the generation of linearly chirped parabolic pulses with 17-W average power at 75 MHz repetition rate and diffraction-limited beam quality in a large-mode-area ytterbium-doped fiber amplifier. Highly efficient transmission gratings in fused silica are applied to recompress these pulses down to 80-fs with an efficiency of 60%, resulting in a peak power of 1.7 MW. Power scaling limitations given by the amplifier bandwidth are discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.B. Schaffer, A. Brodeur, J.F. García, and E. Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy�?? Opt. Lett. 26, 93 (2001).
    [CrossRef]
  2. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond laser pulses," Opt. Express 7, 41-49 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41</a>
    [CrossRef] [PubMed]
  3. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, �??16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser�?? Opt. Lett. 25, 859 (2000).
    [CrossRef]
  4. F. Brunner, T. Südmeyer, E. Innenhofer, R. Paschotta, F. Morier-Genoud, U. Keller, J. Gao, K. Contag, A. Giesen, V.E. Kisel, V.G. Shcherbitsky, and N.V. Kuleshov, �??240-fs pulses with 22-W average power from a passively mode-locked thin disk Yb:KY(WO4)2 laser,�?? Conference on Lasers and Electro-Optics, Long Beach, CA, 2002, paper CME3.
  5. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker, �??110 W fibre laser,�?? Electron. Lett. 35, 1158 (1999).
    [CrossRef]
  6. J. Limpert, A. Liem, S. Höfer, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R.Müller, �??150W Nd/Yb codoped fiber laser at 1.1 µm,�?? Conference on Lasers and Electro-optics, Long Beach, CA, 2002, paper CThX1.
  7. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum, �??Double Clad, Offset Core Nd Fiber Laser,�?? Optical Fiber Communication Conference, PD5, 1988.
  8. J. Limpert, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H.Voelckel, �??High-average-power millijoule fiber amplifier system,�?? Conference on Lasers and Electro-optics, Long Beach, CA, 2002, paper CThX3.
  9. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, �??Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-strip laser diode,�?? Opt. Lett. 24, 673 (1999).
    [CrossRef]
  10. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, �??Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers,�?? IEEE Photon. Technol. Lett. 10, 1718 (1998)
    [CrossRef]
  11. M.E. Fermann, �??Single-mode excitation of multimode fibers with ultrashort pulses,�?? Opt. Lett. 23, 52 (1998).
    [CrossRef]
  12. A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, G. Korn, �??Highaverage power ultrafast fiber chirped pulse amplification system,�?? Appl. Phys. B 71, 889 (2000)
    [CrossRef]
  13. A. Galvanauskas, Z. Sartania, M. Bischoff, �??Millijoule femtosecond all-fiber system,�?? Conference on Lasers and Electroptics, Baltimore, MD, 2001, paper CMA1
  14. D. Anderson, M. Desaix, M. Karlson, M. Lisak, and M.L. Quiroga-Teixeiro, �??Wave-breaking-free pulses in nonlinear-optical fibers,�?? J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  15. K. Tamura and M. Nakazawa, �??Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,�?? Opt. Lett. 21, 68 (1996)
    [CrossRef] [PubMed]
  16. V.I. Kruglov, A.C. Peacock, J.D. Harvey, and J.M. Dudley, �??Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,�?? J. Opt. Soc. Am. B, 19, 461 (2002).
    [CrossRef]
  17. G.P. Agrawal, Nonlinear Fiber Optics, (Academic, New York 1995).
  18. M.E. Fermann, V.I. Kruglov, B.C. Thomson, J.M. Dudley, and J.D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  19. A. Galvanauskas, �??Mode-scalable fiber-based chirped pulse amplification systems,�?? IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [CrossRef]
  20. M.E. Fermann, M.L. Stock, A. Galvanauskas, G.C. Cho, and B.C. Thomson, �??Third-order dispersion control in ultrafast Yb fiber amplifiers,�?? in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, page 355 (2001).
  21. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-Optics, Elements, systems and applications, edited by H.P.Herzig (Taylor and Francis, Bristol, 1997)
  22. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, and B.A. Richman, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]

Appl. Phys. B

A. Liem, D. Nickel, J. Limpert, H. Zellmer, U. Griebner, S. Unger, A. Tünnermann, G. Korn, �??Highaverage power ultrafast fiber chirped pulse amplification system,�?? Appl. Phys. B 71, 889 (2000)
[CrossRef]

Conference on Lasers and Electro-optics

J. Limpert, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H.Voelckel, �??High-average-power millijoule fiber amplifier system,�?? Conference on Lasers and Electro-optics, Long Beach, CA, 2002, paper CThX3.

F. Brunner, T. Südmeyer, E. Innenhofer, R. Paschotta, F. Morier-Genoud, U. Keller, J. Gao, K. Contag, A. Giesen, V.E. Kisel, V.G. Shcherbitsky, and N.V. Kuleshov, �??240-fs pulses with 22-W average power from a passively mode-locked thin disk Yb:KY(WO4)2 laser,�?? Conference on Lasers and Electro-Optics, Long Beach, CA, 2002, paper CME3.

J. Limpert, A. Liem, S. Höfer, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R.Müller, �??150W Nd/Yb codoped fiber laser at 1.1 µm,�?? Conference on Lasers and Electro-optics, Long Beach, CA, 2002, paper CThX1.

Conference on Lasers and Electroptics

A. Galvanauskas, Z. Sartania, M. Bischoff, �??Millijoule femtosecond all-fiber system,�?? Conference on Lasers and Electroptics, Baltimore, MD, 2001, paper CMA1

Electron. Lett.

V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker, �??110 W fibre laser,�?? Electron. Lett. 35, 1158 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, �??Mode-scalable fiber-based chirped pulse amplification systems,�?? IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, �??Power Scaling in Passively Mode-Locked Large-Mode Area Fiber Lasers,�?? IEEE Photon. Technol. Lett. 10, 1718 (1998)
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Optical Fiber Communication Conference

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum, �??Double Clad, Offset Core Nd Fiber Laser,�?? Optical Fiber Communication Conference, PD5, 1988.

OSA Trends in Optics and Photonics Serie

M.E. Fermann, M.L. Stock, A. Galvanauskas, G.C. Cho, and B.C. Thomson, �??Third-order dispersion control in ultrafast Yb fiber amplifiers,�?? in Advanced Solid-State Lasers, Vol. 50 of OSA Trends in Optics and Photonics Series, page 355 (2001).

Phys. Rev. Lett.

M.E. Fermann, V.I. Kruglov, B.C. Thomson, J.M. Dudley, and J.D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, and B.A. Richman, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other

J. Turunen, "Diffraction theory of microrelief gratings," in Micro-Optics, Elements, systems and applications, edited by H.P.Herzig (Taylor and Francis, Bristol, 1997)

G.P. Agrawal, Nonlinear Fiber Optics, (Academic, New York 1995).

Supplementary Material (1)

» Media 1: AVI (1976 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

The Movie (1.9 MB) shows the evolution of a parabolic pulse in a nonlinear fiber amplifier in the normal dispersion regime

Fig. 2.
Fig. 2.

Illustration of the pulse and spectral width in a parabolic fiber amplifier subject to the propagation distance

Fig. 3.
Fig. 3.

Experimental setup of the parabolic pulse fiber amplifier

Fig.4.
Fig.4.

Calculated diffraction efficiency of the binary 1250 lines/mm transmission grating in fused silica as a function of duty cycle and groove depth

Fig.5.
Fig.5.

Calculated diffraction efficiency depending on the wavelength and the angle of incidence

Fig. 6.
Fig. 6.

Scanning-electron microscope picture of the transmission grating in fused silica fabricated by electron beam writing

Fig. 7.
Fig. 7.

Output power characteristics of the large-mode-area fiber based amplifier

Fig. 8.
Fig. 8.

Measured autocorrelation trace of the output pulses from the fiber amplifier

Fig. 9.
Fig. 9.

Experimentally obtained output spectrum of the fiber amplifier

Fig. 10.
Fig. 10.

Calculated output spectra of the fiber amplifier at different output energies

Fig. 11.
Fig. 11.

(a) Calculated pulse shape and temporal phase of the parabolic pulses

Fig. 11.
Fig. 11.

(b) Calculated autocorrelation trace of the parabolic pulses

Fig. 12.
Fig. 12.

Intensity autocorrelation trace of the recompressed 80-fs pulses (dashed curve: fit)

Fig. 13.
Fig. 13.

(a) Measured FROG spectrogram after the grating pair compressor

Fig. 13.
Fig. 13.

(b) Retrieved temporal intensity and phase of the high power 80-fs pulses

Fig. 14.
Fig. 14.

Measured autocorrelation trace at an output power of 20 W of the fiber amplifier

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i A z = 1 2 β 2 2 A T 2 γ A 2 A + i g 2 A
Δ T i , opt = 3 g 2 / 3 ( γ β 2 / 2 ) 1 / 3 E i 1 / 3
E i , opt = 2 ( Δ T i ) 3 g 2 27 γ β 2 .

Metrics