Abstract

Cervical autofluorescence has been demonstrated to have potential for real-time diagnosis. Inter-patient and intra-patient variations in fluorescence intensity have been measured. Inter-patient measurements may vary by a factor of ten, while intra-patient measurements may vary by a factor of two. Age and menopausal status have been demonstrated to account for some of the variations, while race and smoking have not. In order to explore in detail the role of the menstrual cycle in intra-patient variation, a study was designed to measure fluorescence excitation emission matrices (EEMs) in patients daily throughout one cycle. Ten patients with a history of normal menstrual cycles and normal Papanicolaou smears underwent daily measurements of fluorescence EEMs from three colposcopically normal sites throughout one menstrual cycle. Changes in signals from porphyrin, NADH, and FAD fluorescence and blood absorption were noted when the data was viewed in a graphical format. Visually interpreted features of the EEMs in this graphical format did not appear to correlate with the day of the menstrual cycle with the exception that blood absorption features were more prominent during the menstrual phase (during which bleeding occurs), suggesting that measurements during the menstrual phase should be avoided. Variations in cycle date likely do not account for inter- or intra-patient variations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).
  2. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
    [Crossref]
  3. R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
    [Crossref]
  4. J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
    [Crossref] [PubMed]
  5. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).
  6. K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
    [Crossref] [PubMed]
  7. S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).
  8. H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
    [Crossref]
  9. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
    [Crossref]
  10. M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
    [Crossref] [PubMed]
  11. C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
    [Crossref] [PubMed]
  12. S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
    [Crossref]
  13. J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.
  14. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
    [Crossref] [PubMed]
  15. N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
    [Crossref] [PubMed]
  16. N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
    [Crossref]
  17. C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
    [Crossref] [PubMed]
  18. C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).
  19. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
    [Crossref]
  20. D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).
  21. M. Bueeler, “Design Optimization and Quality Control of a Fluorescence and Reflectance Spectroscopy System,”Diploma Thesis, Dept. of Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (2000).
  22. S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

2001 (3)

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

2000 (1)

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

1999 (2)

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

1998 (2)

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

1996 (2)

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

1995 (2)

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).

1994 (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

1993 (1)

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

1992 (1)

K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

1991 (2)

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

1987 (1)

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Alfano, R. R.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Anderson, R.

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

Atkinson, E. N.

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

Atkinson, N.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

Backman, V.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Bigio, I. J.

I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).

Boppart, S. A.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Bouma, B.E.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Brand, S.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Brezinski, M. E.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Brookner, C.

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

Bueeler, M.

M. Bueeler, “Design Optimization and Quality Control of a Fluorescence and Reflectance Spectroscopy System,”Diploma Thesis, Dept. of Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (2000).

Chang, S. K.

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

Choy, D. S. J.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Collier, T.

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

Compton, C.

K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Compton, C.C.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Cox, D. D.

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

Crawford, J. M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Dam, J. Van

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Dawood, M. Y.

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Drezek, R.

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

Dunn, A.

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

Durkin, A.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Esterowitz, R.

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

Fan, J.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Feld, M. S.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Fitzmaurice, M.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Follen, M.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Follen Mitchell, M.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Fuchs, H.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Fujimoto, J. G.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Gillenwater, A.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Grossman, D.

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

Hamano, T.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Heintzelman, D. L.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

Herrmann, J. M.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Hung, J.

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

Itzkan, I.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Jacob, R.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Kemp, B.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Lam, S.

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

Lam, W.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

LeRiche, J.

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

LeRiche, J. C.

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

Lima, C.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Loree, T. R.

I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).

Lui, H.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

MacAulay, C.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

Mahadevan, A.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

Malpica, A.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

Manoharan, R.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

McLean, D. I.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

Mitchell, M. F.

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Mitchell, M. Follen

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

Mourant, J.

I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).

Nishioka, N.S.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Nusrat, A.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Opher, E.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Palcic, B.

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

Perelman, L.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Petras, R. E.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Pitris, C.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Poneros, J.M.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Pradham, A.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Profio, A. E.

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

Rajadhyaksha, M.

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

Ramanujam, N.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Rava, R. P.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Richards-Kortum, R.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Richards-Kortum, R. R.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Richards-Kortum, R.R.

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

Seiler, M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Shields, S.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Silva, E.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Sivak, M.

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Smithpeter, C.

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

Staerkel, G.

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Stamper, D. L.

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

Tang, G. C.

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

Tearney, G.J.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

Thomsen, S.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Utzinger, U.

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Wallace, M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Webb, H.

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

Wright, T.

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

Zonios, G.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Zuluaga, A.

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Appl Spectrosc (2)

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl Spectrosc,  5, 955–959 (2001).
[Crossref]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl Spectrosc 53, 302–311 (1999).
[Crossref]

Comput Aided Surg (1)

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,” Comput Aided Surg 6(2), 94–103 (2001).
[Crossref]

IEEE J Quant Electron (1)

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J Quant Electron 23(10), 1806–1811 (1987).
[Crossref]

J Biomed Opt (1)

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, and R. Richards-Kortum, “Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,” J Biomed Opt 3, 429–43 (1998).
[Crossref] [PubMed]

J Invest Dermatol (1)

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, and R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J Invest Dermatol 104, 946–952 (1995).
[Crossref] [PubMed]

J Thoracic Cardiovasc Surg (1)

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,” J Thoracic Cardiovasc Surg 105, 1035–40 (1993).

Lasers Surg Med (5)

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg Med 11, 99–105 (1991).
[Crossref] [PubMed]

I. J. Bigio, T. R. Loree, and J. Mourant, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg Med 16, 350–357 (1995).

K. T. Schomacker, J. K. Frisoli, and C. Compton, “Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,” Lasers Surg Med 12, 63–78 (1992).
[Crossref] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,” Lasers Surg Med 19, 63–74 (1996).
[Crossref] [PubMed]

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, and M. F. Mitchell, “Cervical fluorescence of normal women,” Lasers Surg Med 24, 29–37 (1999).
[Crossref] [PubMed]

Photochem Photobiol (2)

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, and R. Richards-Kortum, “Cervical pre-cancer detection sing a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths” Photochem Photobiol 6, 720–35 (1996).
[Crossref]

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem Photobiol 53(6), 777–786 (1991).

Phys Rev Lett (1)

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys Rev Lett 80, 627–30 (1998).
[Crossref]

Proc Natl Acad Sci U S A (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,” Proc Natl Acad Sci U S A 91, 10193–97 (1994).
[Crossref] [PubMed]

Proc SPIE (1)

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc SPIE 4224, 366–373 (2000).
[Crossref]

submitted, J Biomed Opt (1)

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, and E. N. Atkinson, “Effects of biographical variables on cervical fluorescence emission spectra,” submitted, J Biomed Opt(2001).

Other (4)

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,”Gastroenterology 120(1):7–12.

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, and M. Follen, “Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,” submitted, Appl Spectrosc (2001).

M. Bueeler, “Design Optimization and Quality Control of a Fluorescence and Reflectance Spectroscopy System,”Diploma Thesis, Dept. of Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (2000).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, and M. Follen, “Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?” submitted, J Biomed Opt (2001).

Supplementary Material (3)

» Media 1: AVI (558 KB)     
» Media 2: AVI (602 KB)     
» Media 3: AVI (819 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Block diagram of system used to measure fluorescence EEMs.

Figure 2.
Figure 2.

(620KB) Movie of variations in the normalized EEM as a function of cycle date for a squamous normal site from subject 309, site 2.

Figure 3.
Figure 3.

(819KB) Movie of variations in the normalized EEM as a function of cycle date for a columnar normal site for subject 301, site 1.

Figure 4.
Figure 4.

Absorption matrices of A) oxygenated blood and B) deoxygenated blood.

Figure 5.
Figure 5.

Equally weighted combination of deoxygenated blood and oxygenated blood absorption matrix.

Figure 6.
Figure 6.

EEM with little or no blood absorption effects visible.

Figure 7.
Figure 7.

EEM of Figure 6 computationally modified by the blood absorption matrix of Figure 5.

Figure 8.
Figure 8.

Measured EEM with strong blood absorption effects evident.

Figure 9.
Figure 9.

The regions of interest, which were visually assessed in each EEM, are labeled peaks 1–4.

Figure 10.
Figure 10.

Correlation of visually assessed amount of blood absorption for each site in each of the ten subjects. Patients ordered by increasing age. Columnar sites: subject C301 site 1, subject C306 site 3 and subject C310 site 2.

Figure 11:
Figure 11:

Average EEM for all the squamous sites across all ten subjects.

Figure 12:
Figure 12:

(558KB) Movie of the 28-day residual EEMs time series. Intensity values have all been magnified by a factor of 5X

Tables (1)

Tables Icon

Table 1: Example of the Visual Estimation of Feature Strength for Site 1 of Subject C300

Metrics