Abstract

Cervical autofluorescence has been demonstrated to have potential for real-time diagnosis. Inter-patient and intra-patient variations in fluorescence intensity have been measured. Inter-patient measurements may vary by a factor of ten, while intra-patient measurements may vary by a factor of two. Age and menopausal status have been demonstrated to account for some of the variations, while race and smoking have not. In order to explore in detail the role of the menstrual cycle in intra-patient variation, a study was designed to measure fluorescence excitation emission matrices (EEMs) in patients daily throughout one cycle. Ten patients with a history of normal menstrual cycles and normal Papanicolaou smears underwent daily measurements of fluorescence EEMs from three colposcopically normal sites throughout one menstrual cycle. Changes in signals from porphyrin, NADH, and FAD fluorescence and blood absorption were noted when the data was viewed in a graphical format. Visually interpreted features of the EEMs in this graphical format did not appear to correlate with the day of the menstrual cycle with the exception that blood absorption features were more prominent during the menstrual phase (during which bleeding occurs), suggesting that measurements during the menstrual phase should be avoided. Variations in cycle date likely do not account for inter- or intra-patient variations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. J. Bigio, T. R. Loree, J. Mourant, �??Spectroscopic diagnosis of bladder cancer with elastic light scattering,�?? Lasers Surg. Med. 16, 350-357 (1995).
  2. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, �??Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,�?? Phys. Rev. Lett. 80, 627-30 (1998).
    [CrossRef]
  3. R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, E. Opher, �??Fluorescence spectra from cancerous and normal human breast and lung tissues,�?? IEEE J. Quant. Electron. 23, 1806-1811 (1987).
    [CrossRef]
  4. J. Hung, S. Lam, J. C. LeRiche, B. Palcic, �??Autofluorescence of normal and malignant bronchial tissue,�?? Lasers Surg. Med. 11, 99-105 (1991).
    [CrossRef] [PubMed]
  5. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, �??Spectroscopic diagnosis of colonic dysplasia,�?? Photochem. Photobiol. 53, 777-786 (1991).
  6. K. T. Schomacker, J. K. Frisoli, C. Compton, �??Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,�?? Lasers Surg. Med. 12, 63-78 (1992).
    [CrossRef] [PubMed]
  7. S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, �??Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,�?? J. Thoracic Cardiovasc. Surg. 105, 1035-40 (1993).
  8. H. Zeng, D. I. McLean, C. MacAulay, H. Lui, �??Autofluorescence properties of skin and applications in dermatology,�?? Proc. SPIE 4224, 366-373 (2000).
    [CrossRef]
  9. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, �??Near infrared Raman spectroscopy for in vivo detection of cervical precancers,�?? Appl. Spectrosc. 5, 955-959 (2001).
    [CrossRef]
  10. M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, R. Anderson, �??In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,�?? J. Invest Dermatol. 104, 946-952 (1995).
    [CrossRef] [PubMed]
  11. C. Smithpeter, A. Dunn, R. Drezek, T. Collier, R. Richards-Kortum, �??Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,�?? J. Biomed. Opt. 3, 429-43 (1998).
    [CrossRef] [PubMed]
  12. S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, J. G. Fujimoto, �??Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,�?? Comput. Aided Surg. 6, 94-103 (2001).
    [CrossRef]
  13. J. M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, �??Diagnosis of specialized intestinal metaplasia by optical coherence tomography,�?? Gastroenterology 120, 7-12.
  14. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. R. Richards-Kortum, �??In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,�?? Proc. Natl. Acad. Sci. U S A 91, 10193-97 (1994).
    [CrossRef] [PubMed]
  15. N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, �??Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,�?? Lasers Surg. Med. 19, 63-74 (1996).
    [CrossRef] [PubMed]
  16. N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, �??Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,�?? Photochem. Photobiol. 6, 720-35 (1996).
    [CrossRef]
  17. C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, M. F. Mitchell, �??Cervical fluorescence of normal women,�?? Lasers Surg. Med. 24, 29-37 (1999).
    [CrossRef] [PubMed]
  18. C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, E. N. Atkinson, �??Effects of biographical variables on cervical fluorescence emission spectra,�?? submitted, J. Biomed. Opt. (2001).
  19. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. Richards-Kortum, �??Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,�?? Appl. Spectrosc. 53, 302-311 (1999).
    [CrossRef]
  20. D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, M. Follen, �??Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,�?? submitted, Appl. Spectrosc. (2001).
  21. M. Bueeler, �??Design Optimization and Quality Control of a Fluorescence and Reflectance Spectroscopy System,�?? Diploma Thesis, Dept. of Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (2000).
  22. S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, M. Follen, �??Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?�?? submitted, J. Biomed. Opt. (2001).

Appl. Spectrosc. (3)

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, �??Near infrared Raman spectroscopy for in vivo detection of cervical precancers,�?? Appl. Spectrosc. 5, 955-959 (2001).
[CrossRef]

A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. Richards-Kortum, �??Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis,�?? Appl. Spectrosc. 53, 302-311 (1999).
[CrossRef]

D. D. Cox, S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R.R. Richards-Kortum, M. Follen, �??Detecting the signal of the menstrual cycle in fluorescence spectroscopy of the cervix,�?? submitted, Appl. Spectrosc. (2001).

Comput. Aided Surg. (1)

S. A. Boppart, J. M. Herrmann, C. Pitris, D. L. Stamper, M. E. Brezinski, J. G. Fujimoto, �??Real-time optical coherence tomography for minimally invasive imaging of prostate ablation,�?? Comput. Aided Surg. 6, 94-103 (2001).
[CrossRef]

Gastroenterology (1)

J. M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, N.S. Nishioka, �??Diagnosis of specialized intestinal metaplasia by optical coherence tomography,�?? Gastroenterology 120, 7-12.

IEEE J. Quant. Electron. (1)

R. R. Alfano, G. C. Tang, A. Pradham, W. Lam, D. S. J. Choy, E. Opher, �??Fluorescence spectra from cancerous and normal human breast and lung tissues,�?? IEEE J. Quant. Electron. 23, 1806-1811 (1987).
[CrossRef]

J. Biomed. Opt. (3)

C. Smithpeter, A. Dunn, R. Drezek, T. Collier, R. Richards-Kortum, �??Near real time confocal microscopy of in situ amelanotic cells: sources of signal, contrast agents, and limits of contrast,�?? J. Biomed. Opt. 3, 429-43 (1998).
[CrossRef] [PubMed]

C. Brookner, U. Utzinger, M. Follen, R. Richards-Kortum, E. N. Atkinson, �??Effects of biographical variables on cervical fluorescence emission spectra,�?? submitted, J. Biomed. Opt. (2001).

S. K. Chang, M. Y. Dawood, G. Staerkel, U. Utzinger, R. R. Richards-Kortum, M. Follen, �??Fluorescence spectroscopy for cervical pre-cancer detection: is there variance across the menstrual cycle?�?? submitted, J. Biomed. Opt. (2001).

J. Invest Dermatol. (1)

M. Rajadhyaksha, D. Grossman, R. Esterowitz, H. Webb, R. Anderson, �??In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,�?? J. Invest Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

J. Thoracic Cardiovasc. Surg. (1)

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, �??Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device,�?? J. Thoracic Cardiovasc. Surg. 105, 1035-40 (1993).

Lasers Surg. Med. (5)

J. Hung, S. Lam, J. C. LeRiche, B. Palcic, �??Autofluorescence of normal and malignant bronchial tissue,�?? Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

I. J. Bigio, T. R. Loree, J. Mourant, �??Spectroscopic diagnosis of bladder cancer with elastic light scattering,�?? Lasers Surg. Med. 16, 350-357 (1995).

C. Brookner, U. Utzinger, G. Staerkel, R. Richards-Kortum, M. F. Mitchell, �??Cervical fluorescence of normal women,�?? Lasers Surg. Med. 24, 29-37 (1999).
[CrossRef] [PubMed]

N. Ramanujam, M. Follen Mitchell, A. Mahadevan, S. Thomsen, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, �??Spectroscopic diagnosis of cervical intraepithelial neoplasia (CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths,�?? Lasers Surg. Med. 19, 63-74 (1996).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. Compton, �??Ultraviolet laser-induced fluorescence of colonic tissue: Basic biology and diagnostic potential,�?? Lasers Surg. Med. 12, 63-78 (1992).
[CrossRef] [PubMed]

Photochem. Photobiol. (2)

N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, �??Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,�?? Photochem. Photobiol. 6, 720-35 (1996).
[CrossRef]

R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, M. S. Feld, �??Spectroscopic diagnosis of colonic dysplasia,�?? Photochem. Photobiol. 53, 777-786 (1991).

Phys. Rev. Lett. (1)

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, �??Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,�?? Phys. Rev. Lett. 80, 627-30 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. R. Richards-Kortum, �??In vivo diagnosis of cervical intraepithelial neoplasia using 337 nm laser induced fluorescence,�?? Proc. Natl. Acad. Sci. U S A 91, 10193-97 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Zeng, D. I. McLean, C. MacAulay, H. Lui, �??Autofluorescence properties of skin and applications in dermatology,�?? Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

Other (1)

M. Bueeler, �??Design Optimization and Quality Control of a Fluorescence and Reflectance Spectroscopy System,�?? Diploma Thesis, Dept. of Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (2000).

Supplementary Material (3)

» Media 1: AVI (558 KB)     
» Media 2: AVI (602 KB)     
» Media 3: AVI (819 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Block diagram of system used to measure fluorescence EEMs.

Figure 2.
Figure 2.

(620KB) Movie of variations in the normalized EEM as a function of cycle date for a squamous normal site from subject 309, site 2.

Figure 3.
Figure 3.

(819KB) Movie of variations in the normalized EEM as a function of cycle date for a columnar normal site for subject 301, site 1.

Figure 4.
Figure 4.

Absorption matrices of A) oxygenated blood and B) deoxygenated blood.

Figure 5.
Figure 5.

Equally weighted combination of deoxygenated blood and oxygenated blood absorption matrix.

Figure 6.
Figure 6.

EEM with little or no blood absorption effects visible.

Figure 7.
Figure 7.

EEM of Figure 6 computationally modified by the blood absorption matrix of Figure 5.

Figure 8.
Figure 8.

Measured EEM with strong blood absorption effects evident.

Figure 9.
Figure 9.

The regions of interest, which were visually assessed in each EEM, are labeled peaks 1–4.

Figure 10.
Figure 10.

Correlation of visually assessed amount of blood absorption for each site in each of the ten subjects. Patients ordered by increasing age. Columnar sites: subject C301 site 1, subject C306 site 3 and subject C310 site 2.

Figure 11:
Figure 11:

Average EEM for all the squamous sites across all ten subjects.

Figure 12:
Figure 12:

(558KB) Movie of the 28-day residual EEMs time series. Intensity values have all been magnified by a factor of 5X

Tables (1)

Tables Icon

Table 1: Example of the Visual Estimation of Feature Strength for Site 1 of Subject C300

Metrics