Abstract

Commercial aerodynamic particle sizing instruments generally achieve the desired particle size measurement by accelerating a sample airstream in which the particles are suspended and measuring the velocity acquired by individual particles. The accelerating flow regime can cause liquid droplets to deform and this subsequently introduces errors. In this paper, we present an apparatus that enables droplet deformation to be observed by recording the spatial light scatter intensity. The paper presents experimental data in video format showing the changes that occur in the light scattering from droplets as a function of increasing flow rate/deformation.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Agarwal, and R. J. Remiarz, “Development of an aerodynamic particle size analyzer,” USDHEW-NIOSH Contract Report No. 210-80-0800, Cincinnati OH: NIOSH (1981).
  2. P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55-67 (1986).
    [CrossRef]
  3. W. D. Griffiths, P. J. Iles, and N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427-431 (1986).
    [CrossRef]
  4. S. Holler, Y. Pan, R. K. Chang and J. R. Bottiger, S.C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 18, 1489-1491 (1998).
    [CrossRef]
  5. E Hirst, P H Kaye, and J R Guppy, “Light scattering from non-spherical airborne particles; theoretical and experimental comparisons,” Appl. Opt. 33, 7180-7187 (1994).
    [CrossRef] [PubMed]
  6. P.H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophysical Res. (Atmospheres), 101, D14, 19,215-19,221 (1996).
  7. P. H. Kaye, E. Hirst, and Z. Wang-Thomas, “Neural-network based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149-6156 (1997).
    [CrossRef] [PubMed]
  8. C.F.BohrenandD.R.Huffman,Absorption & Scattering of Light by Small Particles. (Wiley-InterScience, New York, 1983).
  9. Hill, S. C. Benner, R. E., “Morphology-Dependent Resonances” in Optical Effects Associated with Small Particles, Barber, P. W. Chang, R. K. eds. (World Scientific Publishing Co., Singapore, 1988).
  10. D.R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley and G. Videen “Light Scattering From Deformed Droplets And Droplets With Inclusions. I: Experimental results,” Appl. Opt. 39, 5023-5029 (2000).
    [CrossRef]
  11. G.Videen,W.Sun,Q.Fu,D.R.Secker,P.H.Kaye,R.S.Greenaway,E.Hirst,andD.L.Bartley,“Light Scattering From Deformed Droplets And Droplets With Inclusions. II: Theoretical Treatment,” Appl. Opt. 39, 5030-5039 (2000).
    [CrossRef]
  12. D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, and E. Hirst, “Droplet Distortion in Accelerating Flow,” J. Aerosol Sci. 31 1447-1460 (2000).
    [CrossRef]

Other (12)

J. K. Agarwal, and R. J. Remiarz, “Development of an aerodynamic particle size analyzer,” USDHEW-NIOSH Contract Report No. 210-80-0800, Cincinnati OH: NIOSH (1981).

P. A. Baron, “Calibration and use of the Aerodynamic Particle Sizer (APS 3300),” Aerosol Sci. Technol. 5, 55-67 (1986).
[CrossRef]

W. D. Griffiths, P. J. Iles, and N. P. Vaughan, “The behaviour of liquid droplets in an APS 3300,” J. Aerosol Sci. 17, 427-431 (1986).
[CrossRef]

S. Holler, Y. Pan, R. K. Chang and J. R. Bottiger, S.C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 18, 1489-1491 (1998).
[CrossRef]

E Hirst, P H Kaye, and J R Guppy, “Light scattering from non-spherical airborne particles; theoretical and experimental comparisons,” Appl. Opt. 33, 7180-7187 (1994).
[CrossRef] [PubMed]

P.H. Kaye, K. Alexander-Buckley, E. Hirst, and S. Saunders, “A real-time monitoring system for airborne particle shape and size analysis,” J. Geophysical Res. (Atmospheres), 101, D14, 19,215-19,221 (1996).

P. H. Kaye, E. Hirst, and Z. Wang-Thomas, “Neural-network based spatial light-scattering instrument for hazardous airborne fiber detection,” Appl. Opt. 36, 6149-6156 (1997).
[CrossRef] [PubMed]

C.F.BohrenandD.R.Huffman,Absorption & Scattering of Light by Small Particles. (Wiley-InterScience, New York, 1983).

Hill, S. C. Benner, R. E., “Morphology-Dependent Resonances” in Optical Effects Associated with Small Particles, Barber, P. W. Chang, R. K. eds. (World Scientific Publishing Co., Singapore, 1988).

D.R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley and G. Videen “Light Scattering From Deformed Droplets And Droplets With Inclusions. I: Experimental results,” Appl. Opt. 39, 5023-5029 (2000).
[CrossRef]

G.Videen,W.Sun,Q.Fu,D.R.Secker,P.H.Kaye,R.S.Greenaway,E.Hirst,andD.L.Bartley,“Light Scattering From Deformed Droplets And Droplets With Inclusions. II: Theoretical Treatment,” Appl. Opt. 39, 5030-5039 (2000).
[CrossRef]

D. L. Bartley, A. B. Martinez, P. A. Baron, D. R. Secker, and E. Hirst, “Droplet Distortion in Accelerating Flow,” J. Aerosol Sci. 31 1447-1460 (2000).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (3102 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of particle delivery system used in TSI Aerodynamic Particle Sizer 3300 series instruments.

Fig. 2.
Fig. 2.

Examples of spatial light scattering profiles: left to right: 9µm water droplet; 20µm oleic acid droplet with non-concentric water inclusion; sodium chloride crystal; crocidolite fiber; chrysotile fiber.

Fig. 3.
Fig. 3.

Schematic diagram showing apparatus used to investigate droplet deformation.

Fig. 4.
Fig. 4.

(3.1MB) Movie showing spatial light scattering profiles of di-ethyl-phthalate showing increasing deformation with increasing sample flow rate from 1.0 l/min to 6.0 l/min.

Fig. 5.
Fig. 5.

Top row, light scattering patterns from deformed droplets; Bottom row, images of the droplets corresponding to the same experimental conditions.

Metrics