Abstract

We rederive the Area Theorem for propagation of short optical pulses. We show how to take pulse chirping and homogeneous damping into account to obtain new results for pulse phase.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
    [CrossRef]
  2. S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).
    [CrossRef]
  3. R.E. Slusher and H.M. Gibbs, Phys. Rev. A 5, 1634 (1972), and Erratum  6, 1255 (1973).
    [CrossRef]
  4. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Pub., New York, 1987) Chap. 1.
  5. G.L. Lamb, Elements of Soliton Theory (John Wiley and Sons, New York, 1980).
  6. S.E. Harris, Physics Today 50, 36 (1997).
    [CrossRef]
  7. J.H. Eberly, Quantum Semiclassic. Opt. 7, 373 (1995).
    [CrossRef]
  8. J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
    [CrossRef] [PubMed]
  9. Symposeum on Coherence in Loss free Pulse Propagation, Rainer Grobe, presider, OSA Annual Meeting, October 12 – 17, 1997 Supplement to Opt. Photonics News8 No. 8 (Optical Society of America, Washington, D.C., 1997), Session ThKK.

1997 (1)

S.E. Harris, Physics Today 50, 36 (1997).
[CrossRef]

1996 (1)

J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
[CrossRef] [PubMed]

1995 (1)

J.H. Eberly, Quantum Semiclassic. Opt. 7, 373 (1995).
[CrossRef]

1972 (1)

R.E. Slusher and H.M. Gibbs, Phys. Rev. A 5, 1634 (1972), and Erratum  6, 1255 (1973).
[CrossRef]

1969 (1)

S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

1967 (1)

S.L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
[CrossRef]

Allen, L.

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Pub., New York, 1987) Chap. 1.

Eberly, J.H.

J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
[CrossRef] [PubMed]

J.H. Eberly, Quantum Semiclassic. Opt. 7, 373 (1995).
[CrossRef]

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Pub., New York, 1987) Chap. 1.

Gibbs, H.M.

R.E. Slusher and H.M. Gibbs, Phys. Rev. A 5, 1634 (1972), and Erratum  6, 1255 (1973).
[CrossRef]

Grobe, R.

J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
[CrossRef] [PubMed]

Hahn, E. L.

S.L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
[CrossRef]

Hahn, E.L.

S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Harris, S.E.

S.E. Harris, Physics Today 50, 36 (1997).
[CrossRef]

Lamb, G.L.

G.L. Lamb, Elements of Soliton Theory (John Wiley and Sons, New York, 1980).

McCall, S.L.

S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

S.L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
[CrossRef]

Rahman, A.

J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
[CrossRef] [PubMed]

Slusher, R.E.

R.E. Slusher and H.M. Gibbs, Phys. Rev. A 5, 1634 (1972), and Erratum  6, 1255 (1973).
[CrossRef]

Phys. Rev. (1)

S.L. McCall and E.L. Hahn, Phys. Rev. 183, 457 (1969).
[CrossRef]

Phys. Rev. A (1)

R.E. Slusher and H.M. Gibbs, Phys. Rev. A 5, 1634 (1972), and Erratum  6, 1255 (1973).
[CrossRef]

Phys. Rev. Lett. (2)

J.H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76, 3687 (1996)
[CrossRef] [PubMed]

S.L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
[CrossRef]

Physics Today (1)

S.E. Harris, Physics Today 50, 36 (1997).
[CrossRef]

Quantum Semiclassic. Opt. (1)

J.H. Eberly, Quantum Semiclassic. Opt. 7, 373 (1995).
[CrossRef]

Other (3)

Symposeum on Coherence in Loss free Pulse Propagation, Rainer Grobe, presider, OSA Annual Meeting, October 12 – 17, 1997 Supplement to Opt. Photonics News8 No. 8 (Optical Society of America, Washington, D.C., 1997), Session ThKK.

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Dover Pub., New York, 1987) Chap. 1.

G.L. Lamb, Elements of Soliton Theory (John Wiley and Sons, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d θ d z = α 2 sin θ ,
θ ( z , t ) t d t Ω ( z , t ' ) .
Ω ζ i Ω ϕ ζ = i μ 2 ( u i v ) .
i τ ( u i v ) = ( Δ ϕ τ i γ ) ( u i v ) + Ω ω Δ ,
u i v = i τ d τ ' e i a ( τ τ ' ) e i [ ϕ ( τ ) ϕ ( τ ' ) ] Ω ( τ ' ) ω Δ ( τ ' ) ,
1 γ + i Δ i 𝛲 Δ + π δ ( Δ ) .
+ Ω ζ d τ = θ ζ = μ 2 + ω Δ ( τ ) π δ ( Δ ) Ω ( τ ) d τ ,
Ω ϕ ζ = μ 2 Ω w Δ Δ Δ 2 + γ 2 ,

Metrics