Abstract

We propose an all-optical modulation format conversion scheme from non-return-to-zero on-off-keying (NRZ-OOK) to return-to-zero (RZ) multiple-level phase-shift-keying (PSK) based on nonlinearity in optical fiber. The proposed conversion scheme is numerically investigated and experimentally demonstrated. We experimentally demonstrate error-free operation of NRZ-OOK/RZ- binary PSK conversion at 10.7 Gb/s. The operation of the NRZ-OOK/RZ-quadrature PSK conversion is shown by eye opening after balanced receiving at a symbol rate of 10.7 Gsymbol/s. In addition, we demonstrate the feasibility of the modulation format conversion from NRZ-OOK to RZ-8-levels PSK by numerical simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. J. Winzer and R. -J. Essiambre, "Advanced optical modulation formats," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2003, Th2.6.1.
  2. G. Charlet, "Progress in optical modulation formats for high-bit rate WDM transmissions," IEEE J. Sel. Top. Quantum Electron. 12, 469-483 (2006).Q1
    [CrossRef]
  3. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115- 130 (2005).
    [CrossRef]
  4. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, "25×40-Gb/s copolarized DPSK transmission over 12×100-km NZDF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 15, 467-469 (2003).
    [CrossRef]
  5. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, "A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise," J. Lightwave Technol. 21, 1933-1943 (2003).
    [CrossRef]
  6. R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A.C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, and N. J. Parsons, "10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration," in Conf. Proc. of Optical Fiber Communication (OFC), 2002, FD6.
  7. G. Charlet, P. Tran, H. Mardoyan,M. Lefrancois, T. Fauconnier, F. Jorge, and S. Bigo, "151×43Gb/s transmission over 4,080km based on return-to-zero differential quadrature phase-shift-keying," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2005, PD Th.4.1.3.
  8. M. Serbay, C. Wree, and W. Rosenkranz, "Experimental investigation of RZ-8DPSK at 3x 10.7 Gb/s," in Conf. Proc. of Lasers and Electro-Optics Society (LEOS) Annual Meeting, 2005, WE3.
  9. C. G. Lee, Y. J. Kim, ChulS. Park, H. J. Lee, and Chang -S. Park, "Experimental demonstration of 10-Gb/s data format conversion between NRZ and RZ using SOA-Loop-Mirror," J. Lightwave Technol. 23, 834-841 (2005).
    [CrossRef]
  10. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
    [CrossRef]
  11. W. Li, M. Chen, Y. Dong, and S. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
    [CrossRef]
  12. T. Kawanishi, T. Sakamoto, and M. Izutsu, "All-optical modulation format conversion from frequency-shiftkeying to phase-shift-keying by using optical double-sideband modulation technique," in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2005, CWO1.
  13. K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K. Kitayama, "NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter," J. Lightwave Technol. 24, 3751-3758 (2006).
    [CrossRef]
  14. C. S. Langhorst, R. Ludwig, M. Galili, B. Huettl, F. Futami, S. Watanabe, and C. Schubert, "160 Gbit/s alloptical OOK to DPSK in-line format conversion," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2006, PD Th4.3.5.
  15. A. Hasegawa and Y. Kodama, "Solitons in optical communications," in Chapter 5 (Oxford University Press, Oxford, 1995).
  16. J. Slovak, C. Bornholdt, J. Klreissl, S. Bauer, M. Biletzke, M. Schlak, and B. Sartorius, "Bit rate and wavelength transparent all-optical clock recovery scheme for NRZ-coded PRBS signals," IEEE Photon. Technol. Lett. 18, 844-846 (2006).
    [CrossRef]
  17. W. Mao, Y. Li, M. Al-Mumim, and G. Li, "All-optical clock recovery for both RZ and NRZ data," IEEE Photon. Technol. Lett. 14, 873-875 (2002).
    [CrossRef]

2006

G. Charlet, "Progress in optical modulation formats for high-bit rate WDM transmissions," IEEE J. Sel. Top. Quantum Electron. 12, 469-483 (2006).Q1
[CrossRef]

K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K. Kitayama, "NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter," J. Lightwave Technol. 24, 3751-3758 (2006).
[CrossRef]

J. Slovak, C. Bornholdt, J. Klreissl, S. Bauer, M. Biletzke, M. Schlak, and B. Sartorius, "Bit rate and wavelength transparent all-optical clock recovery scheme for NRZ-coded PRBS signals," IEEE Photon. Technol. Lett. 18, 844-846 (2006).
[CrossRef]

2005

2004

W. Li, M. Chen, Y. Dong, and S. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

2003

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, "25×40-Gb/s copolarized DPSK transmission over 12×100-km NZDF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 15, 467-469 (2003).
[CrossRef]

T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, "A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise," J. Lightwave Technol. 21, 1933-1943 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

2002

W. Mao, Y. Li, M. Al-Mumim, and G. Li, "All-optical clock recovery for both RZ and NRZ data," IEEE Photon. Technol. Lett. 14, 873-875 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. Charlet, "Progress in optical modulation formats for high-bit rate WDM transmissions," IEEE J. Sel. Top. Quantum Electron. 12, 469-483 (2006).Q1
[CrossRef]

IEEE Photon. Technol. Lett.

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, "25×40-Gb/s copolarized DPSK transmission over 12×100-km NZDF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 15, 467-469 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

W. Li, M. Chen, Y. Dong, and S. Xie, "All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror," IEEE Photon. Technol. Lett. 16, 203-205 (2004).
[CrossRef]

J. Slovak, C. Bornholdt, J. Klreissl, S. Bauer, M. Biletzke, M. Schlak, and B. Sartorius, "Bit rate and wavelength transparent all-optical clock recovery scheme for NRZ-coded PRBS signals," IEEE Photon. Technol. Lett. 18, 844-846 (2006).
[CrossRef]

W. Mao, Y. Li, M. Al-Mumim, and G. Li, "All-optical clock recovery for both RZ and NRZ data," IEEE Photon. Technol. Lett. 14, 873-875 (2002).
[CrossRef]

J. Lightwave Technol.

Other

P. J. Winzer and R. -J. Essiambre, "Advanced optical modulation formats," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2003, Th2.6.1.

R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A.C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, and N. J. Parsons, "10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration," in Conf. Proc. of Optical Fiber Communication (OFC), 2002, FD6.

G. Charlet, P. Tran, H. Mardoyan,M. Lefrancois, T. Fauconnier, F. Jorge, and S. Bigo, "151×43Gb/s transmission over 4,080km based on return-to-zero differential quadrature phase-shift-keying," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2005, PD Th.4.1.3.

M. Serbay, C. Wree, and W. Rosenkranz, "Experimental investigation of RZ-8DPSK at 3x 10.7 Gb/s," in Conf. Proc. of Lasers and Electro-Optics Society (LEOS) Annual Meeting, 2005, WE3.

C. S. Langhorst, R. Ludwig, M. Galili, B. Huettl, F. Futami, S. Watanabe, and C. Schubert, "160 Gbit/s alloptical OOK to DPSK in-line format conversion," in Conf. Proc. of European Conference on Optical Communication (ECOC), 2006, PD Th4.3.5.

A. Hasegawa and Y. Kodama, "Solitons in optical communications," in Chapter 5 (Oxford University Press, Oxford, 1995).

T. Kawanishi, T. Sakamoto, and M. Izutsu, "All-optical modulation format conversion from frequency-shiftkeying to phase-shift-keying by using optical double-sideband modulation technique," in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2005, CWO1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

All-optical modulation format conversion at the gateway node between MAN and WAN.

Fig. 2.
Fig. 2.

Schematic diagram of the proposed modulation format conversion.

Fig. 3.
Fig. 3.

The probe pulse after passing through HNLF: (a) Waveform; (b) Phase.

Fig. 4.
Fig. 4.

Experimental setup for NRZ-OOK/RZ-BPSK conversion.

Fig. 5.
Fig. 5.

Eye diagram and spectrum of converted signal before 1-bit delay interferometer: (a) Eye diagram; (b) Spectrum.

Fig. 6.
Fig. 6.

Eye diagrams of converted signal after 1-bit delay interferometer: (a) Constructive output; (b) Destructive output.

Fig. 7.
Fig. 7.

Eye diagrams after the balanced receiver.

Fig. 8.
Fig. 8.

Measured BER.

Fig. 9.
Fig. 9.

The probe pulse after passing through HNLF: (a) Waveform; (b) Phase.

Fig. 10.
Fig. 10.

Experimental setup for NRZ-OOK/RZ-QPSK conversion.

Fig. 11.
Fig. 11.

Eye diagram and spectrum of converted signal before 1-bit delay interferometer: (a) Eye diagram; (b) Spectrum.

Fig. 12.
Fig. 12.

Eye diagrams of converted signal after 1-bit delay interferometer: (a) Constructive output; (b) Destructive output; (c) Received signal with balanced receiver.

Fig. 13.
Fig. 13.

The probe pulse after passing through HNLF: (a) Waveform; (b) Phase.

Tables (1)

Tables Icon

Table 1. Parameters of the HNLF @1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ pro = k = 1 K Δ ϕ k = 2 γ L eff k = 1 K P k ,
i E z β 2 2 2 E t 2 + s E 2 E = iγE .

Metrics