Abstract

An optical monitoring method is described to compensate for the thickness error of nonquarterwave layers of dielectric multilayer filters, using optical admittance during deposition. Stability is confirmed by computer simulation of random thickness error generation in layers. In addition, a band split filter consisting of 61 nonquarterwave and nonperiodic layers is deposited using the proposed method, resulting in high spectral performance, as the application requires.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, "Monitoring of optical coatings," Appl. Opt. 20, 82-88 (1981).
    [CrossRef] [PubMed]
  2. B. T. Sullivan and J. A. Dobrowolski, "Deposition error compensation for optical multilayer coatings. I. Theoretical description," Appl. Opt. 31, 3821-3835 (1992).
    [CrossRef] [PubMed]
  3. B. T. Sullivan and J. A. Dobrowolski, "Deposition error compensation for optical multilayer coatings. II. Experimental results-Sputtering system," Appl. Opt. 32, 2351-2360 (1993).
    [CrossRef] [PubMed]
  4. H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
    [CrossRef]
  5. B. Vidal and E. Pelletier, "Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors," Appl. Opt. 18, 3857-3862 (1979).
    [PubMed]
  6. H. A. Macleod, "Turning value monitoring of narrow-band all-dielectric thin-film optical filters," Opt. Acta 19, 1-28 (1972).
    [CrossRef]
  7. F. Zhao, "Monitoring of periodic multilayer by the level method," Appl. Opt. 24, 3339-3343 (1985).
    [CrossRef] [PubMed]
  8. R. R. Willey, "Improved repeatability in the production of periodic thin film structures by the use of "Steering" with optical monitoring," Proc. Soc. Vac. Coaters 36, 156-159 (1993).
  9. C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
    [CrossRef]
  10. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IoP, Bristol, UK, 2001).
    [CrossRef]

2004

C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
[CrossRef]

1993

B. T. Sullivan and J. A. Dobrowolski, "Deposition error compensation for optical multilayer coatings. II. Experimental results-Sputtering system," Appl. Opt. 32, 2351-2360 (1993).
[CrossRef] [PubMed]

R. R. Willey, "Improved repeatability in the production of periodic thin film structures by the use of "Steering" with optical monitoring," Proc. Soc. Vac. Coaters 36, 156-159 (1993).

1992

1985

1981

1979

1977

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
[CrossRef]

1972

H. A. Macleod, "Turning value monitoring of narrow-band all-dielectric thin-film optical filters," Opt. Acta 19, 1-28 (1972).
[CrossRef]

Dobrowolski, J. A.

Lu, W.

C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
[CrossRef]

Macleod, H. A.

H. A. Macleod, "Monitoring of optical coatings," Appl. Opt. 20, 82-88 (1981).
[CrossRef] [PubMed]

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
[CrossRef]

H. A. Macleod, "Turning value monitoring of narrow-band all-dielectric thin-film optical filters," Opt. Acta 19, 1-28 (1972).
[CrossRef]

Pelletier, E.

B. Vidal and E. Pelletier, "Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors," Appl. Opt. 18, 3857-3862 (1979).
[PubMed]

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
[CrossRef]

Sullivan, B. T.

Vidal, B.

Wang, Y.

C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
[CrossRef]

Willey, R. R.

R. R. Willey, "Improved repeatability in the production of periodic thin film structures by the use of "Steering" with optical monitoring," Proc. Soc. Vac. Coaters 36, 156-159 (1993).

Zhang, C.

C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
[CrossRef]

Zhao, F.

Appl. Opt.

Opt. Acta

H. A. Macleod and E. Pelletier, "Error compensation mechanisms in some thin film monitoring systems," Opt. Acta 24, 907-930 (1977).
[CrossRef]

H. A. Macleod, "Turning value monitoring of narrow-band all-dielectric thin-film optical filters," Opt. Acta 19, 1-28 (1972).
[CrossRef]

Opt. Eng.

C. Zhang, Y. Wang, and W. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
[CrossRef]

Proc. Soc. Vac. Coaters

R. R. Willey, "Improved repeatability in the production of periodic thin film structures by the use of "Steering" with optical monitoring," Proc. Soc. Vac. Coaters 36, 156-159 (1993).

Other

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IoP, Bristol, UK, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Admittance diagram: Dotted line refers to the admittance loci of design and solid line to the deviated admittance loci with thickness error on nH layer, where ①,②,⑤, and ⑥ are the loci of nH layer, and ③ and ④ the loci of nL layer.

Fig. 2.
Fig. 2.

Simulated optical monitoring signal for thickness error correction: (dashed line) monitoring signal for a design of [air| 1.054H 1.041L 1.367H |sub], and (solid line) modified monitoring signal for compensation of thickness error for [air| 1.159H 0.8331L 1.49H |sub], where the first layer deposited on the substrate has thickness error from 1.367H to 1.49H.

Fig. 3.
Fig. 3.

Refractive index distribution of a band split filter, consisting of 61 layers: [Air| 1.558H 0.765L 0.837H 0.983L 1.230H 0.991L 0.883H 0.920L 1.039H 1.059L 0.967H 0.947L 0.961H 1.009L 0.980H 0.989L 0.952H 0.992L 0.989H 0.994L 0.926H 0.979L 0.995H 1.018L 0.942H 0.973L 0.943H 1.009L 0.999H 0.977L 0.933H 0.995L 0.985H 0.986L 0.936H 1.031L 0.948H 0.991L 0.931H 1.057L 0.904H 1.037L 0.930H 1.015L 0.942H 1.058L 0.905H 0.961L 1.086H 0.959L 0.873H 1.134L 0.864H 1.109L 0.971H 0.921L 1.104H 1.037L 1.054H 1.041L 1.369H | BK7] (nL = 1.457, nH = 2.065, λ0 = 1730 nm).

Fig. 4.
Fig. 4.

Simulation of thickness error compensation for BSF. (a) 5 % random thickness error (b) 5 % random thickness error is compensated using admittance. The theoretical transmittance curve for the multilayer design (black dotted line) is shown along with the transmittance curves of the simulations (red solid line).

Fig. 5.
Fig. 5.

Runsheet of (a) design and (b) actual coating. Monitoring wavelength is 1510 nm. Black dot in (a) indicates termination point of each layer.

Fig. 6.
Fig. 6.

Transmittance of design and actual coating of BSF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( x n 2 + n sub 2 2 n sub ) 2 + y 2 = ( n 2 n sub 2 2 n sub ) 2 .
( x n L 2 + n Lsub 2 2 n Lsub ) 2 + y 2 = ( n L 2 n Lsub 2 2 n Lsub ) 2 .
( x n H 2 + n Hsub 2 2 n Hsub ) 2 + y 2 = ( n H 2 n Hsub 2 2 n Hsub ) 2 .
x C 2 = 1 2 ( α 2 β 2 ε γ + γ + ε )
y C 2 = ± α 2 ( x C 2 γ ) 2 or y C 2 = ± β 2 ( x C 2 ε ) 2
α = n L 2 n Lsub 2 2 n Lsub , β = n H 2 n Hsub 2 2 n Hsub , γ = n L 2 + n Lsub 2 2 n Lsub , and ε = n H 2 + n Hsub 2 2 n Hsub .
R C 2 = 1 Y C 2 1 + Y C 2 2 = ( 1 x C 2 ) 2 + y C 2 2 ( 1 + x C 2 ) 2 + y C 2 2 .
Y B 2 = [ 1 R 1 + R for Y < 1 1 + R 1 R for Y > 1
Y D 1 = Y D 2 2 n H

Metrics