Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic simulation of quantum well structures

Open Access Open Access

Abstract

We present an auxiliary differential equation Finite-difference Time-domain (ADE-FDTD) approach to numerically model the wave propagation within a gain or absorbing medium such as quantum well structures. Start from traditional quantum electronics theory, the macroscopic susceptibility of the semiconductor is derived and expressed by a multiple-Lorentz-like model based on Prony’s method. With the auxiliary differential equation method each Lorentz-like model can be simulated in the time domain and the induced polarization is then determined by summing all the models. By incorporating the induced polarization into the time-domain Maxwell’s equations, electromagnetic wave propagation in the quantum well medium can be accurately modeled using the FDTD method.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics

Jethro H. Greene and Allen Taflove
Opt. Express 14(18) 8305-8310 (2006)

One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media

Xiang-Hua Wang, Wen-Yan Yin, and Zhi Zhang (David) Chen
Opt. Express 21(18) 20565-20576 (2013)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Band structure of the semiconductor.
Fig. 2.
Fig. 2. FDTD grid sketch map
Fig. 3.
Fig. 3. Comparison of the real part and image part of χ(ω) as computed by Prony’s method and quantum electronics theory with injection current density N= 6×1018/ cm-3.
Fig. 4.
Fig. 4. Comparison of the field absorption factor and phase shift factor as computed by ADE-FDTD and analytical result with injection current density a) N= 1×1018/ cm-3 , b) N= 6×1018/ cm-3 , and c) N= 12×1018/ cm-3.
Fig. 5.
Fig. 5. (a) Multiple quantum well structure, (b) Snapshots of pulse shape propagating in the MQW structure , (c) Absorption factor and phase shift of the MQW structure.

Tables (1)

Tables Icon

Table 1. Numerical Values Used in the validation Calculations

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

df e ( k ) dt = j γE ( t ) ħ [ ρ eh ( k ) ρ eh * ( k ) ] f e ( k ) f e 0 ( k ) τ e
df h ( k ) dt = j γE ( t ) ħ [ ρ eh * ( k ) ρ eh ( k ) ] f h ( k ) f h 0 ( k ) τ h
eh ( k ) dt = j γE ( t ) ħ [ f e ( k ) + f h ( k ) 1 ] j E k ħ ρ eh ( k ) ρ eh ( k ) T 2
f e 0 ( k ) = 1 exp ( E e ( k ) F e k b T ) + 1
f h 0 ( k ) = 1 exp ( E h ( k ) F h k b T ) + 1
f e ( k ) = f e 0 ( k ) τ e τ e + τ h [ f e 0 ( k ) + f h 0 ( k ) 1 ] L ( ħ ω E k ) I I s 1 + L ( ħ ω E k ) I I s
f h ( k ) = f h 0 ( k ) τ h τ e + τ h [ f e 0 ( k ) + f h 0 ( k ) 1 ] L ( ħ ω E k ) I I s 1 + L ( ħ ω E k ) I I s
ρ eh = [ E ( ω ) ( f e ( k ) + f h ( k ) 1 ) ] j ( ωħ + E k ) + ħ T 2
P ( t ) = Tr [ ργ ] = γ ( ρ eh + ρ eh * )
P ( t ) = ε 0 χ ( t ) E ( t )
χ ( ω ) = γ ε 0 E ( ω ) ( ρ eh + ρ eh * )
χ ( ω ) γ 2 ε 0 k 1 V [ f e 0 ( k ) + f h 0 ( k ) 1 ] [ 1 j ( ωħ E k ) + ħ T 2 1 j ( ωħ E k ) + ħ T 2 ]
D ( E ) = n m n 2 πħ 2 H ( E E n )
D r , in ( E ) = m r , i 2 πħ 2 H ( E E g , in ) , i = h , l ; n = 1,2 ,
m r , i = m n m v m c + m v
E g , in = E g + E c , n + E v , in
χ ( ω ) i , n γ i 2 ε 0 D n ( E ) ( f e 0 + f h 0 1 ) [ 1 j ( ωħ E k ) + ħ T 2 1 j ( ωħ + E k ) + ħ T 2 ] dE
γ i 2 = e 2 m 0 2 ω 2 M b 2 δ i
M b 2 = 2 ξ m 0 E g
δ i = { 3 4 [ 1 + E c , n + E v , hn ε E g ] , i = h 1 4 [ 5 3 ( E c , n + E v , ln ) ε E g ] , i = l
χ ( ω ) i , n e 2 M b 2 m 0 2 ω 2 ε 0 δ i D n ( E ) ( f e 0 + f h 0 1 ) [ 1 j ( ωħ E k ) + ħ T 2 1 j ( ωħ + E k ) + ħ T 2 ] dE
{ tan ( 2 m E n ħ 2 d z 2 ) = V 0 E n E n , for even mode ( n = 2,4,6 , ) cot ( 2 m E n ħ 2 d z 2 ) = V 0 E n E n , for odd mode ( n = 1,3,5 , )
{ × E = μ H t × H = ε E t + P t
{ μ H y t = E x z ε E x t + P t = H y z
χ ( t ) 2 γ 2 ħ ε 0 i , n δ i D n ( ε ) ( f e 0 + f h 0 1 ) sin ( ε ħ t ) exp ( ω T t ) U ( t )
J ( t ) = P ( t ) t = ε 0 χ ( t ) t E ( t ) = σ ( t ) E ( t )
σ ( t ) 2 ħ i , n γ 2 δ i D n ( ε ) ( f e 0 + f h 0 1 ) [ ε ħ cos ( ε ħ t ) ω T sin ( ε ħ t ) ] exp ( ω T t ) U ( t )
σ ( t ) = i = 1 P C i D i = i = 1 P C i exp [ ( α i + i ) t ] U ( t )
σ ( ω ) = 2 i = 1 P 2 jωA i ( A i α i + B i ω i ) ( α i 2 + ω i 2 ) 2 jωα i ω 2 = i = 1 P 2 σ i ( ω )
σ p + E 1 σ p 1 + E 2 σ p 2 + + E p σ 1 = 0
σ p + 1 + E 1 σ p + E 2 σ p 1 + + E p σ 2 = 0
σ N + E 1 σ N 1 + E 2 σ N 2 + + E p σ N p = 0
D p + E 1 D p 1 + E 2 D p 2 + + E p 1 D 1 + E p = 0
C 1 + C 2 + + C p = σ 1
D 1 C 1 + D 2 C 2 + + D p C p = σ 2
( D 1 ) 2 C 1 + ( D 2 ) 2 C 2 + + ( D p ) 2 C p + σ 3
( D 1 ) N 1 C 1 + ( D 2 ) N 2 C 2 + + ( D p ) N 1 C p = σ N
J ( ω ) = i = 1 P 2 J i ( ω ) = i = 1 P 2 σ i ( ω ) E ( ω )
{ 2 J i ( t ) 2 t 2 α i J i ( t ) t + ( α i 2 + ω i 2 ) J i ( t ) = 2 A i E x ( t ) t 2 ( A i α i + B i ω i ) E x ( t ) J ( t ) = i = 1 P 2 J i ( t )
E x n + 1 2 ( I ) = E x n 1 2 ( I ) Δ t Δ ( I ) [ H y n ( I + 1 2 ) H y n ( I 1 2 ) ] Δ t ε ( I ) J n ( I )
H y n + 1 ( I + 1 2 ) = H y n ( I + 1 2 ) Δ t Δ [ E x n ( I + 1 ) E x n ( I ) ]
J i n + 1 ( I ) = 2 ( α i 2 + ω i 2 ) Δ t 2 1 α i Δ t J i n ( I ) 1 + α i Δ t 1 α i Δ t J i n 1 ( I )
( A i α i + B i ω i ) Δ t 2 2 A i Δ t 1 α i Δ t E x n + 1 2 ( I ) ( A i α i + B i ω i ) Δ t 2 + 2 A i Δ t 1 α i Δ t E x n 1 2 ( I )
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.