Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast generation of holographic optical tweezers by random mask encoding of Fourier components

Open Access Open Access

Abstract

The random mask encoding technique of multiplexing phase-only filters can be easily adapted to the generation of holographic optical tweezers. The result is a direct, non-iterative and extremely fast algorithm that can be used for computing arbitrary arrays of optical traps. Additional benefits include the possibility of modifying any existing hologram to quickly add more trapping sites and the inexistence of ghost traps or replicas.

©2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Adding functionalities to precomputed holograms with random mask multiplexing in holographic optical tweezers

Josep Mas, Michelle S. Roth, Estela Martín-Badosa, and Mario Montes-Usategui
Appl. Opt. 50(10) 1417-1424 (2011)

Aberration correction in holographic optical tweezers

Kurt D. Wulff, Daniel G. Cole, Robert L. Clark, Roberto DiLeonardo, Jonathan Leach, Jon Cooper, Graham Gibson, and Miles J. Padgett
Opt. Express 14(9) 4169-4174 (2006)

Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications

A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read
Opt. Express 14(7) 3065-3072 (2006)

Supplementary Material (1)

Media 1: MPG (2268 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Optical setup for generating holographic optical tweezers.
Fig. 2.
Fig. 2. Encoding two linear phases by complementary random binary masks.
Fig. 3.
Fig. 3. (a) Binary mask, 256×256 pixels. (b) Magnitude squared of its Fourier transform in logarithmic scale.
Fig. 4.
Fig. 4. (a) Hologram encoding an array of 4 optical traps and b) resulting traps.
Fig. 5.
Fig. 5. New trapping site added to a Gerchberg-Saxton hologram.
Fig. 6.
Fig. 6. (2.21 MB) Real-time, interactive manipulation of two yeast cells by means of tweezers generated with the algorithm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y ) = ∫∫ R ( u , v ) e i 2 π λf ' ( ux + vy ) dudv .
R ( u , v ) = k = 1 N e i 2 π λf ' ( x k u + y k v ) ,
E ( x , y ) = k = 1 N ∫∫ e i 2 π λf ' [ ( x x k ) u + ( y y k ) v ] dudv = k = 1 N δ ( x x k , y y k ) .
R ( u , v ) = k = 1 N h k ( u , v ) e i 2 π λf ' ( x k u + y k v ) ,
h k ( u , v ) = { 1 iff ( u , v ) I k 0 otherwise ,
I l I m = l , m l m and k = 1 N I k = 2 .
E ( x , y ) = k = 1 N H k ( x x k , y y k ) ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.