Abstract

We numerically investigate the 2R-regeneration technique utilizing self-phase modulation and off-center filtering. Our numerical simulations take into account the incoherent nature of noise through its spectral representation. This approach allows to evaluate a Q-factor improvement of 2 dB for this regenerator. Furthermore, our study points out the role of both the input and the output filter of this regenerator. We show that the input filter must be suitably chosen in order to obtain the best Q-factor improvement. The output filter must also be suitably chosen in order to preserve the modulation format.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect", in Proceedings of the 1998 European Conference on Optical Communications (ECOC, Madrid, 1998) 1, 475-476.
  2. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, K. Dreyer and K. Feder, "40Gbit/s Pseudo-linear transmission over one million kilometres," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2002), FD-10 1-3.
  3. T. H. Her, G. Raybon, C. Headley, "Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber," IEEE Photonics Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  4. N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).
  5. M. Rochette, J. L. Blows, B. J. Eggleton, "An all-optical regenerator that descriminates noise from signal," in Proceedings of the 2005 European Conference on Optical Communications (ECOC, Glasgow, 2005) 3, 403-404.
  6. S. Taccheo, K. Ensner, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photonics Technol. Lett. 14, 1100-1102 (2002).
    [CrossRef]
  7. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
    [CrossRef]
  8. J. T. Mok, J. L. Blows, and B. J. Eggleton, "Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators," Opt. Express 12, 4411-4422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4411.
    [CrossRef] [PubMed]
  9. M. Vasilyev, T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
    [CrossRef] [PubMed]
  10. M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
    [CrossRef]
  11. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Ed. (John Wiley & sons, Inc., 2002).
    [CrossRef]
  12. J. W. Goodman, Statistical Optics (John Willey & sons, Inc., 1985).
  13. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed. (Academic Press, Inc., 1995).
  15. X. Liu, B. Lee, "A fast method for nonlinear Scrh¨odinger equation," IEEE Photonics Technol. Lett. 15, 1549-1551 (2003).
    [CrossRef]

2005

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

M. Vasilyev, T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
[CrossRef] [PubMed]

2004

2003

X. Liu, B. Lee, "A fast method for nonlinear Scrh¨odinger equation," IEEE Photonics Technol. Lett. 15, 1549-1551 (2003).
[CrossRef]

2002

S. Taccheo, K. Ensner, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photonics Technol. Lett. 14, 1100-1102 (2002).
[CrossRef]

1989

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Agata, A.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

Akiba, S.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

Blows, J. L.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

J. T. Mok, J. L. Blows, and B. J. Eggleton, "Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators," Opt. Express 12, 4411-4422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4411.
[CrossRef] [PubMed]

Edagawa, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

Eggleton, B. J.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

J. T. Mok, J. L. Blows, and B. J. Eggleton, "Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators," Opt. Express 12, 4411-4422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4411.
[CrossRef] [PubMed]

Ensner, K.

S. Taccheo, K. Ensner, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photonics Technol. Lett. 14, 1100-1102 (2002).
[CrossRef]

Headley, C.

T. H. Her, G. Raybon, C. Headley, "Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber," IEEE Photonics Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Her, T. H.

T. H. Her, G. Raybon, C. Headley, "Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber," IEEE Photonics Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Kutz, J. N.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Lakoba, T. I.

Lee, B.

X. Liu, B. Lee, "A fast method for nonlinear Scrh¨odinger equation," IEEE Photonics Technol. Lett. 15, 1549-1551 (2003).
[CrossRef]

Liu, X.

X. Liu, B. Lee, "A fast method for nonlinear Scrh¨odinger equation," IEEE Photonics Technol. Lett. 15, 1549-1551 (2003).
[CrossRef]

Matsumoto, M.

Mok, J. T.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

J. T. Mok, J. L. Blows, and B. J. Eggleton, "Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators," Opt. Express 12, 4411-4422 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4411.
[CrossRef] [PubMed]

Morita, I.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

Moss, D.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Olsson, N. A.

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Raybon, G.

T. H. Her, G. Raybon, C. Headley, "Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber," IEEE Photonics Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Rochette, M.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Taccheo, S.

S. Taccheo, K. Ensner, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photonics Technol. Lett. 14, 1100-1102 (2002).
[CrossRef]

Tsuritani, T.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

Vasilyev, M.

Yoshikane, N.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

IEEE J. Sel. Top. Quantum Electron.

N. Yoshikane, I. Morita, T. Tsuritani, A. Agata, N. Edagawa, S. Akiba, "Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems," IEEE J. Sel. Top. Quantum Electron. 10, 412-420 (2005).

IEEE Photonics Technol. Lett.

S. Taccheo, K. Ensner, "Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses," IEEE Photonics Technol. Lett. 14, 1100-1102 (2002).
[CrossRef]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, B. J. Eggleton, "Bit-error ratio improvement with 2R optical regenerators," IEEE Photonics Technol. Lett. 17, 908-910 (2005).
[CrossRef]

X. Liu, B. Lee, "A fast method for nonlinear Scrh¨odinger equation," IEEE Photonics Technol. Lett. 15, 1549-1551 (2003).
[CrossRef]

T. H. Her, G. Raybon, C. Headley, "Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber," IEEE Photonics Technol. Lett. 16, 200-202 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd Ed. (Academic Press, Inc., 1995).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Ed. (John Wiley & sons, Inc., 2002).
[CrossRef]

J. W. Goodman, Statistical Optics (John Willey & sons, Inc., 1985).

M. Rochette, J. L. Blows, B. J. Eggleton, "An all-optical regenerator that descriminates noise from signal," in Proceedings of the 2005 European Conference on Optical Communications (ECOC, Glasgow, 2005) 3, 403-404.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect", in Proceedings of the 1998 European Conference on Optical Communications (ECOC, Madrid, 1998) 1, 475-476.

G. Raybon, Y. Su, J. Leuthold, R. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, K. Dreyer and K. Feder, "40Gbit/s Pseudo-linear transmission over one million kilometres," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2002), FD-10 1-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic bloc diagram used for simulation.

Fig. 2.
Fig. 2.

Description of white noise gaussian : (a) Magnitude and (b) phase of the bandwidth-limited white noise in the frequency domain, (c) real and (d) imaginary part of noise in the time domain and probability density functions of (e) real and (f) imaginary part of noise in the time domain. In this figure A = 10-10 √W/Hz and B = 100 GHz. For numerical simulations, we have devided the total frequency range vmax = 1000 GHz in N = 218 points, leading to a sampling frequency vs = vmax/N = 3.8 MHz and a time window T = 1/vs = 260 ns.

Fig. 3.
Fig. 3.

(a) Eye diagram and (b) intensity histogram of the detected signal.

Fig. 4.
Fig. 4.

Q-factor versus OSNR for different ER.

Fig. 5.
Fig. 5.

Schematic diagram of the regenerator.

Fig. 6.
Fig. 6.

Transfer function of the regenerator and notation used.

Fig. 7.
Fig. 7.

Schematic bloc diagram used for simulation in the white noise approach.

Fig. 8.
Fig. 8.

Q-factor improvement evolution versus peak power in the white noise approach.

Fig. 9.
Fig. 9.

Evolution of the spectrum of both signal and noise through the regenerator : (a) before the input filter, (b) after the input filter, (c) after the nonlinear fiber and (d) after the output filter.

Fig. 10.
Fig. 10.

Q-factor improvement evolution versus peak power for different input filter band-widths.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ˜ S ( v ) = 1 N k = N / 2 N / 2 1 E S ( k T N ) exp ( 2 i π k T N v )
E ˜ N ( v ) = A exp ( ( v ) ) ,
E ˜ 1 ( v ) = E ˜ S ( v ) + E ˜ N ( v ) .
E ˜ 2 ( v ) = F 1 ( v ) E ˜ 1 ( v ) .
v 1 ( t ) = R E 2 ( t ) 2 ,
v ˜ 2 ( v ) = H ( v ) v ˜ 1 ( v ) ,
Q 1 = V 1 V 0 σ 1 + σ 0 ,
i E z + β 2 2 2 E t 2 + i α 2 E = γ E 2 E ,
E ˜ 3 ( v ) = F 2 ( v ) E ˜ 2 ( v ) .

Metrics