Abstract

We investigate the effect of saturation in the propagation of ablation channels performed in fused silica with many incident femtosecond pulses and laser fluence slightly above the ultrafast ablation threshold. A 110 fs Ti:Sapphire laser system is used in the experiments and the results are compared with theoretical predictions performed with a numerical model developed by the authors. Diffraction of the incoming pulses at the entrance of the channel as well as reflections at the walls of the channel play a crucial role in the progress of the crater as it is shown by means of the numerical results. The effect of the pulse duration in the shape of the ablation channel is also investigated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  2. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Morou,W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
    [CrossRef]
  3. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
    [CrossRef]
  4. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
    [CrossRef]
  5. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
    [CrossRef]
  6. A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys. 77, 311–315 (2003).
  7. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605–612 (2004).
    [CrossRef]
  8. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
    [CrossRef] [PubMed]
  9. C. Méndez, J. R. Vázquez de Aldana, G. A. Torchia, and L. Roso, “Integrated-grating-induced control of second-harmonic beams in frequency-doubling crystals,” Opt. Lett. 30, 2763–2765 (2005).
    [CrossRef] [PubMed]
  10. The experimental method for measuring the ablation threshold can be found in: G. Dimitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. A 74, 729–739 (2002).
    [CrossRef]
  11. M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
    [CrossRef]
  12. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D: Appl. Phys. 37, 1492–1496 (2004).
    [CrossRef]
  13. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulses,” Appl. Phys. Lett. 87, 151104 (2005).
    [CrossRef]
  14. J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D: Appl. Phys. 38, 2764–2768 (2005).
    [CrossRef]
  15. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
    [CrossRef]
  16. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5 fs pulses,” Appl. Phys. A 69, 465–466 (1999).
    [CrossRef]
  17. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
    [CrossRef]
  18. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [CrossRef] [PubMed]

Appl. Phys. (1)

A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys. 77, 311–315 (2003).

Appl. Phys. A (5)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605–612 (2004).
[CrossRef]

The experimental method for measuring the ablation threshold can be found in: G. Dimitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. A 74, 729–739 (2002).
[CrossRef]

M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004).
[CrossRef]

I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005).
[CrossRef]

M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5 fs pulses,” Appl. Phys. A 69, 465–466 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulses,” Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999).
[CrossRef]

J. Phys. D: Appl. Phys. (2)

J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D: Appl. Phys. 38, 2764–2768 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D: Appl. Phys. 37, 1492–1496 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Morou,W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: GIF (99 KB)     
» Media 2: GIF (119 KB)     
» Media 3: GIF (566 KB)     
» Media 4: GIF (556 KB)     
» Media 5: GIF (603 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ablation depth of the channels (in μm) in terms of the number of incident laser pulses. a) Experimental results for 110 fs pulses and F 0 = 7 J/cm2. The FWHM beam size was 10.4 μm (red dots) and 8.2 μm (blue dots). b) Numerical results for 50 fs pulses and F 0 = 5.2 J/cm2 (2Fth ). The same beam sizes were employed as in the experiments.

Fig. 2.
Fig. 2.

Digital pictures of the saturated ablation channels for beam sizes a) 8.2 μm and b) 10.4 μm. Laser parameters are the same as in Fig. 1 a). The movies at the bottom (c) [98.9 KB] [Media 1] and d) [118.6 KB] [Media 2]) are numerical simulations for the evolution of the ablation channel. Each frame corresponds to an additional incident pulse. The parameters in the simulations are the same as in Fig. 1 b).

Fig. 3.
Fig. 3.

Numerical simulations for the propagation of the a) [566 KB] 1st [Media 3], b) [556 KB] 15th [Media 4] and c) [603 KB] 40th [Media 5] incident laser pulse. The movies show different time steps of the propagation. Panels on the left represent the squared magnitude of the electric field (in logarithmic scale). Panels on the right represent the free-electron density. The logarithmic color scale is given in m -3. The pulse duration in the simulations was 50 fs, the fluence F 0 = 2Fth (50fs) = 5.2 J/cm2 and the beam size 8.2 μm.

Fig. 4.
Fig. 4.

Diffraction pattern generated by an aperture equal to the entrance diameter of the saturated channel of the previous figure (≃ 11 μm) and 50 fs pulses. The pattern has been computed by numerical integration of the scalar wave-equation with no further approximation. The gray scale is linear with the energy density.

Fig. 5.
Fig. 5.

Ablation depth of the channels performed with 40 fs pulses (blue dots) and with 20 fs pulses (red dots) in terms of the number of incident laser pulses. The beam size in both cases is the same and the fluence F 0(40fs) = 2Fth (40fs) = 4.80 J/cm2 and F 0(20fs) = 2Fth (20fs) = 3.62 J/cm2. In dashed line it is also shown the entrance diameter of the ablation hole. The computed saturated ablation channels appear at the bottom for the 40 fs (left) and 20 fs (right) pulses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ 2 z 2 + 2 ρ 2 + 1 ρ ρ 1 c 2 2 t 2 ] E z ρ t = 1 ε 0 c 2 2 P z ρ t t 2 ,
2 P z ρ t t 2 = Ω 0 2 P z ρ t γ P z ρ t t n B e 2 m P z ρ t .
n F t = W imp n F + W SFI W rec n F .
E ( z = 0 , ρ , t ) = E 0 exp ( 2 ln 2 t 2 τ 2 ) exp ( ρ 2 ρ 0 2 ) sin ( ωt ) ,
W ( z , ρ ) = 0 E z ρ t E z ρ t dt .

Metrics