Abstract

Microlens arrays were self-assembled from microballs using dielectrophoretic energy wells. Energy wells defined by patterned dielectric were used to produce microlens arrays with array patterns of desire. Microballs of 25μm in diameter were measured to have numerical aperture of 0.8 and focal length of 15.5μm. The optical resolution was found to be 0.4μm. Both the numerical aperture and the focal length were further adjusted to 0.66 and 19.0μm by a post-assembly heat treatment at 190°C for 5 minutes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
    [CrossRef]
  2. P. Pantelis and D. J. McCartney, "Polymer microlens arrays," Pure Appl. Opt. 3, 103 (1994).
    [CrossRef]
  3. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
    [CrossRef]
  4. F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
    [CrossRef]
  5. K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
    [CrossRef]
  6. D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
    [CrossRef]
  7. C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
    [CrossRef]
  8. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731(2003)
    [CrossRef] [PubMed]
  9. S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
    [CrossRef]
  10. A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
    [CrossRef]
  11. H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005).
    [CrossRef] [PubMed]
  12. N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices, (Marcel Dekker, New York, 1999), pp. 197-201.
  13. M. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
    [CrossRef]
  14. Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
    [CrossRef]
  15. P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
    [CrossRef] [PubMed]
  16. Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
    [CrossRef]
  17. C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
    [CrossRef] [PubMed]
  18. C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
    [CrossRef]

2006 (2)

C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
[CrossRef] [PubMed]

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

2005 (3)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
[CrossRef] [PubMed]

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

2004 (1)

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

2003 (3)

C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731(2003)
[CrossRef] [PubMed]

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
[CrossRef]

2002 (1)

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

2001 (2)

M. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
[CrossRef]

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
[CrossRef]

2000 (1)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

1999 (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

1996 (1)

K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
[CrossRef]

1994 (1)

P. Pantelis and D. J. McCartney, "Polymer microlens arrays," Pure Appl. Opt. 3, 103 (1994).
[CrossRef]

1990 (1)

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Ando, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

Arai, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

Beinhorn, F.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

Bigl, F.

K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
[CrossRef]

Bu, J.

Chang, C. A.

C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
[CrossRef] [PubMed]

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

Chang, C. C.

C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
[CrossRef] [PubMed]

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

Chang, Y. H.

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Chao, C-K

C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Cheng, J.

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

Cheng, J.-W.

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
[CrossRef] [PubMed]

Daly, D.

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Davies, N.

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Hashimoto, G.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

He, M.

Hirsch, D.

K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
[CrossRef]

Ho, J. R.

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

Huang, Y. P.

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Hutley, M. C.

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Ichimura, I.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Ihlemann, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

Iida, A.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Ishii, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

Kang, S.

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
[CrossRef]

Kishima, K.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Koike, S.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

Kouchiyama, A.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Kudryashov, V.

Lee, C.

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Lee, N.

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
[CrossRef]

Lin, C-P

C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Liu, C. H.

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

Lu, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
[CrossRef]

Lu, Y. S.

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Luther, K.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

McCartney, D. J.

P. Pantelis and D. J. McCartney, "Polymer microlens arrays," Pure Appl. Opt. 3, 103 (1994).
[CrossRef]

Moon, S.

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
[CrossRef]

Nakao, T.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Ngo, N. Q.

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
[CrossRef] [PubMed]

Osato, K.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Pantelis, P.

P. Pantelis and D. J. McCartney, "Polymer microlens arrays," Pure Appl. Opt. 3, 103 (1994).
[CrossRef]

Shimomura, M.

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Shin, T. K.

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

Steven, R. F.

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Troe, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

Whitesides, G. M.

M. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
[CrossRef]

Wu, M.

M. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
[CrossRef]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
[CrossRef] [PubMed]

Xia, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
[CrossRef]

Yaamaoto, K.

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Yabu, H.

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Yang, H.

C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Yeh, J. A.

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
[CrossRef] [PubMed]

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Yin, Y.

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
[CrossRef]

Yuan, X. C.

Zimmer, K.

K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
[CrossRef]

Adv. Mater. (1)

Y. Lu, Y. Yin, and Y. Xia, "A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers," Adv. Mater. 13, 34 (2001).
[CrossRef]

Appl. Phys. A (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, "Micro-lens arrays generated by UV laser irradiation of doped PMMA," Appl. Phys. A 68, 709 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

M. Wu and G. M. Whitesides, "Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography," Appl. Phys. Lett. 78, 2273 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96, 425 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. K. Shin, J. R. Ho, J.-W. Cheng, and J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078 (2004).
[CrossRef]

J. Micromech. Microeng. (2)

S. Moon, N. Lee, and S. Kang, "Fabrication of a microlens array using micro-compression molding with an electroformed mold insert," J. Micromech. Microeng. 13, 98 (2003).
[CrossRef]

C-P Lin, H. Yang, and C-K Chao, "Hexagonal microlens array modeling and fabrication using a thermal reflow process," J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

C. C. Chang, C. A. Chang, C. H. Liu and J. A. Yeh, "A tunable liquid-crystal microlens with hybrid alignment," J. Opt. A: Pure Appl. Opt. 8, S365 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, "Ink-jet fabrication of polymer microlens for optical-I/O chip packaging," Jpn. J. Appl. Phys. 39, 1490 (2000).
[CrossRef]

A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yaamaoto, G. Hashimoto, A. Iida, and K. Osato, "Optical recording using high numerical-aperture microlens by plasma etching," Jpn. J. Appl. Phys. 41, 1825 (2002).
[CrossRef]

Langmuir (1)

H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

D. Daly, R. F. Steven, M. C. Hutley, and N. Davies, "The manufacture of microlenses by melting photoresist," Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature 436, 370 (2005).
[CrossRef] [PubMed]

Opt. Express. (1)

C. C. Chang, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid droplet lens," Opt. Express. 14, 4101 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Quantum. Electron. (1)

Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee, and Y. H. Chang, "Controllability of non-contact cell manipulation by image dielectrophoresis," Opt. Quantum. Electron. 37, 1385 (2005).
[CrossRef]

Pure Appl. Opt. (1)

P. Pantelis and D. J. McCartney, "Polymer microlens arrays," Pure Appl. Opt. 3, 103 (1994).
[CrossRef]

Other (1)

N. F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices, (Marcel Dekker, New York, 1999), pp. 197-201.

Supplementary Material (2)

» Media 1: AVI (618 KB)     
» Media 2: MPG (1078 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The device for self assembly of microballs as high NA MLAs. Two ITO glasses are sandwiched by a 70μm thick spacer. The bottom ITO glass is first coated with a layer of amorphous silicon followed by insulating silicon dioxide coating. A patterned photoresist is formed on the surface of silicon dioxide using photolithography.

Fig. 2.
Fig. 2.

Schematic diagram of DEP energy over three adjacent energy wells: (a) patterned DEP, (b) illumination near the first energy well, and (c) illumination swept to second energy well. The patterned DEP denotes the DEP energy produced by patterned dielectric and the optical DEP denotes the energy induced by illumination. (d) Movie of self-assembly sequence (618 KB version).

Fig. 3.
Fig. 3.

MLA: (a) SEM picture of a MLA on a flexible substrate. (b) OM picture of a flexible MLA curved at radius of 3mm. (The linty edge is caused by cutting the flexible polyimide substrate with scissors).

Fig. 4.
Fig. 4.

Optical micrograph of projected images through the MLA self-assembled from microball lenses of 25μm in diameter and NA of 0.80: (a) image of lenses arranged in square pattern; (b) interference pattern of lenses arranged in hexagonal pattern; (c) movie of interference image captured by OM (1.05MB version); (d) the experimental setup of movie 4(c).

Fig. 5.
Fig. 5.

Focal length and numerical aperture change for different post heat treatments. The heat-treatment temperatures are 91°C, 120°C and 190°C on a hot plate for 5 minutes. PS microball has glass transition temperature Tg of 90°C. Tr and Tg denote the room temperature and glass transition temperature. (“▪” and “•” denote the focal length and numerical aperture, resnectively.)

Tables (1)

Tables Icon

Table 1. Comparison of different MLA fabrication methods.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F DEP = 1 4 π a 3 ε m Re K * ( ω ) ( E 2 )

Metrics