Abstract

Self-phase-modulation and group velocity dispersion of near IR femtosecond pulses in fibers restrict their use in two-photon fluorescence microscopy (TPFM). Here we demonstrate a hollow-core photonic crystal fiber based two-photon fluorescence microscope with low nonlinearity and dispersion effects. We use this fiber-based TPFM system to take two-photon fluorescence (chlorophyll) images of mesophyll tissue in the leaf of Rhaphidophora aurea. With less than 2mW average power exposure on the leaf at 755nm, the near zero-dispersion wavelength, chloroplasts distribution inside the mesophyll cells can be identified with a sub-micron spatial resolution. The acquired image quality is comparable to that acquired by the conventional fiber-free TPFM system, due to the negligible temporal pulse broadening effect.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber

Werner Göbel, Axel Nimmerjahn, and Fritjof Helmchen
Opt. Lett. 29(11) 1285-1287 (2004)

Characterization and application of chirped photonic crystal fiber in multiphoton imaging

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang
Opt. Express 22(9) 10366-10379 (2014)

Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging

Zhiyong Wang, Yaliang Yang, Pengfei Luo, Liang Gao, Kelvin K. Wong, and Stephen T. C. Wong
Opt. Express 18(12) 13017-13028 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  2. D. Bird and M. Gu, “Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber,” Appl. Opt. 41, 1852–1857 (2002).
    [Crossref] [PubMed]
  3. D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microscopy,  208, 35–48 (2002).
    [Crossref]
  4. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031–1033 (2002).
    [Crossref]
  5. D. Bird and M. Gu, “Two-photon fluorescence endscopy with a micro-optic scanning head,” Opt. Lett. 28, 1552–1554 (2002).
    [Crossref]
  6. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
    [Crossref] [PubMed]
  7. D. G. Ouzounov, K. D. Moll, M. A. Forster, W. R. Zipfel, W. W. Web, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microsrure fibers,” Opt. Lett. 27, 1513–1515 (2002).
    [Crossref]
  8. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [Crossref]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  10. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832–2837 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832
    [Crossref] [PubMed]
  11. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332
    [Crossref] [PubMed]
  12. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
    [Crossref] [PubMed]
  13. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russel, L. Farr, B. J. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850nm wavelength,” Opt. Express 11, 1613–1620 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613
    [Crossref] [PubMed]
  14. W. Gobel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29, 1285–1287 (2004).
    [Crossref] [PubMed]
  15. http://www.crystal-fibre.com
  16. U. K. Tirlapur and K. Konig, “Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis,” Planta 214, 1–10 (2001).
    [Crossref]
  17. I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
    [Crossref]
  18. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11, 933–938 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933
    [Crossref] [PubMed]

2004 (1)

2003 (5)

2002 (7)

D. Bird and M. Gu, “Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber,” Appl. Opt. 41, 1852–1857 (2002).
[Crossref] [PubMed]

D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microscopy,  208, 35–48 (2002).
[Crossref]

D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031–1033 (2002).
[Crossref]

D. Bird and M. Gu, “Two-photon fluorescence endscopy with a micro-optic scanning head,” Opt. Lett. 28, 1552–1554 (2002).
[Crossref]

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
[Crossref] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Forster, W. R. Zipfel, W. W. Web, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microsrure fibers,” Opt. Lett. 27, 1513–1515 (2002).
[Crossref]

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

2001 (1)

U. K. Tirlapur and K. Konig, “Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis,” Planta 214, 1–10 (2001).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1998 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Bird, D.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Bouwmans, G.

Broeng, J.

Chen, I-H.

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Cheng, P. C.

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Chu, S.-W.

S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11, 933–938 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933
[Crossref] [PubMed]

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

de Matos, C. J. S.

Denk, W.

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Farr, L.

Fermann, M. E.

Forster, M. A.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Forster, W. R. Zipfel, W. W. Web, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microsrure fibers,” Opt. Lett. 27, 1513–1515 (2002).
[Crossref]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Gobel, W.

Gu, M.

Hansen, K. P.

Hansen, T. P.

Helmchen, F.

W. Gobel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29, 1285–1287 (2004).
[Crossref] [PubMed]

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
[Crossref] [PubMed]

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Konig, K.

U. K. Tirlapur and K. Konig, “Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis,” Planta 214, 1–10 (2001).
[Crossref]

Limpert, J.

Lin, B.-L.

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Lin, C.-Y.

Liu, T.-M.

Luan, F.

Mangan, B. J.

Moll, K. D.

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Nimmerjahn, A.

Nolte, S.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Forster, W. R. Zipfel, W. W. Web, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microsrure fibers,” Opt. Lett. 27, 1513–1515 (2002).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russel, P. St. J.

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Schreiber, T.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Sun, C.-K.

S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11, 933–938 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-933
[Crossref] [PubMed]

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Tank, D. W.

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
[Crossref] [PubMed]

Taylor, J. R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Tirlapur, U. K.

U. K. Tirlapur and K. Konig, “Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis,” Planta 214, 1–10 (2001).
[Crossref]

Tsai, H.-J.

Tünnermann, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

Web, W. W.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Zellmer, H.

Zipfel, W. R.

Appl. Opt. (1)

Applied Optics (1)

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Applied Optics 41, 2930–2933 (2002).
[Crossref] [PubMed]

J. Microscopy (1)

D. Bird and M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microscopy,  208, 35–48 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

I-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti : sapphire and Cr : forsterite laser sources: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34, 1251–1266 (2002).
[Crossref]

Planta (1)

U. K. Tirlapur and K. Konig, “Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis,” Planta 214, 1–10 (2001).
[Crossref]

Science (3)

W. Denk, J. H. Strickler, and W. W. Webb, “2-Photon Laser Scanning Fluorescence Microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers” Science 301, 1702–1704 (2003)
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Other (1)

http://www.crystal-fibre.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experiment setup of the TPFM with a hollow-core photonic crystal fiber.
Fig. 2.
Fig. 2. Power dependent output spectra of the hollow-core PCF at central wavelengths of (a) 750nm, (b) 755nm, (c) 780nm, and (d) 795nm. Input spectra are also provided for comparison.
Fig. 3.
Fig. 3. (a)–(d) Intensity autocorrelation trace with 80mW average power transmitted through the hollow core PCF at different central wavelengths. (e) The relation between temporal pulse width and center wavelength at 80mW and 120mW average power transmitted through the hollow core PCF.
Fig. 4.
Fig. 4. 670nm fluorescence power (rectangle) vs. 755nm excitation power for the mesophyll tissue in the leaf of Rhaphidophora aurea. The well-matched solid line is the slope=2 fitting, confirming its two-photon nature
Fig. 5.
Fig. 5. (a)–(e) Two-photon fluorescence images of mesophyll tissues in the leaf of Rhaphidophora aurea, taken with the conventional fiber-free system. Image size: 160µm×160µm. (f)–(j) Two-photon fluorescence images of mesophyll tissues in the leaf of Rhaphidophora aurea, taken with the system based on a hollow-core PCF. Image size: 160µm×160µm.
Fig. 6.
Fig. 6. Wavelength dependent temporal pulse broadening ratio (squares) and two-photon fluorescence image degradation ratio (triangles).

Metrics