Abstract

We have experimentally implemented a time-resolved diffusive optical tomography system via a novel spread spectrum approach. A low power (~5 mW) laser diode modulated with pseudo-random bit sequences replaces the short pulse laser used in conventional time-resolved optical systems, while the time-resolved transmittance is retrieved by correlating the detected signal with the stimulation sequence. Temporal point spread functions of diffusive light propagating through a turbid medium have been measured with remarkably low noise levels and a temporal resolution of 2.24 nanosecond. We also present results of 2-dimensional scanning imaging experiments as evidences of the great potential of this new imaging technique.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Chance, �??Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,�?? Academic Radiology 8, 209-210 (2001).
    [CrossRef] [PubMed]
  2. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand and J. Butler, �??Non- Invasive in vivo characterization of breast tumors using photon migration spectroscopy,�?? Neoplasia 2, 26-40 (2000).
    [CrossRef] [PubMed]
  3. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, �??Frequency-domain optical mammography: Edge effect corrections,�?? Med. Phys. 23, 146-157 (1996).
    [CrossRef]
  4. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, �??Optical properties of normal and diseased breast tissues: prognosis for optical mammography,�?? J. Biomed. Opt. 1, 342-355 (1996).
    [CrossRef] [PubMed]
  5. Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, A. Yodh, �??An imager that combines near infrared diffusive light and ultrasound,�?? Optics letters 24, 1050-1052 (1999).
    [CrossRef]
  6. B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, �??Cognition-activated low-frequency modulation of light absorption in human brain,�?? Proc. Natl. Acad. Sci. USA 90, 3770-3074 (1993).
    [CrossRef] [PubMed]
  7. D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, �??The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics�?? Neuroimage 13, 76-90 (2001).
    [CrossRef] [PubMed]
  8. J. C. Hebden, A.Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, �??Three-dimensional optical tomography of the premature infant brain,�?? Phys. Med. Biol. 47, 4155-4166 (2002).
    [CrossRef] [PubMed]
  9. C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, E. O. R. Reynolds, �??The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,�?? Brit. J. Obstet. Gynaec. 102, 448-453 (1995).
    [CrossRef] [PubMed]
  10. J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, G. Muller, �??Light scattering study of rheumatoid arthritis,�?? Quantum Electronics 32, 945-952 (2002).
    [CrossRef]
  11. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, �??Near-infrared imaging in the small animal brain: optimization of fiber positions,�?? J. Biomed. Opt. 8, 102-110 (2003).
    [CrossRef] [PubMed]
  12. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, S. H. Kurtzman, �??Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,�?? Neoplasia 5, 379-389 (2003).
    [PubMed]
  13. K. A. Kang, D. F. Bruley, J. M. Londono, B. Chance, �??Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,�?? Ann. Biomed. Engr. 26, 138-145 (1998).
    [CrossRef]
  14. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, �??Three-dimensional time-resolved optical tomography of a conical breast phantom,�?? Appl. Opt. 40, 3278-3287 (2001).
    [CrossRef]
  15. D. Grosenick, H. Wabnitz, H. Rinneberg, �??Time-resolved imaging of solid phantoms for optical mammography,�?? Appl. Opt. 36, 221-231 (1997).
    [CrossRef] [PubMed]
  16. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, R. R. Alfano, �??Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,�?? Appl. Opt. 38, 4237-4246 (1999).
    [CrossRef]
  17. F. Gao, H. J. Zhao, Y. Yamada, �??Improvement of image quality in diffuse optical tomography by use of full time-resolved data,�?? Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  18. S. Behin-Ain, T. van Doorn, J. R. Patterson, �??Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,�?? Phys. Med. Biol. 47 2935-2945 (2002).
    [CrossRef] [PubMed]
  19. N. G. Chen, Q. Zhu, �??Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,�?? Proc. SPIE 4250, 37-44 (2001).
    [CrossRef]
  20. G. W. Faris, M. Banks, �??Upconverting time gate for imaging through highly scattering media,�?? Opt. Lett. 19, 1813-1815 (1994).
    [CrossRef] [PubMed]
  21. R. Mahon, M. D. Duncan, L. L. Tankersley, J. Reintjes, �??Time-gated imaging through dense scatterers with a Raman amplifier,�?? Appl. Opt. 32, 7425-7433 (1993).
    [CrossRef] [PubMed]
  22. L. Wang, P. P. Ho, C. Liu, G. Zhang, A. A. Alfano, �??Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,�?? Science 253, 769-771 (1991).
    [CrossRef] [PubMed]
  23. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, �??A 32-channel time-resolved instrument for medical optical tomography,�?? Rev. Sci. Instrum. 71, 256-265 (2000).
    [CrossRef]
  24. H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, �??Multichannel time-resolved optical tomographic imaging system,�?? Rev. Sci. Instrum. 70, 3595-3602 (1999).
    [CrossRef]
  25. N. G. Chen, Q. Zhu, �??Time-resolved optical measurements with spread spectrum excitation,�?? Opt. Lett. 27, 1806-1808 (2002).
    [CrossRef]
  26. D. A. Boas, M. A. O�??Leary, B. Chance, and A. G. Yodh, �??Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,�?? Appl. Opt. 36, 75-92 (1997).
    [CrossRef] [PubMed]
  27. Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, B. Chance, �??Detection sensitivity and optimization of phased array system,�?? Proc. SPIE 4250, 211-218 (2001).
    [CrossRef]

Academic Radiology (1)

B. Chance, �??Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,�?? Academic Radiology 8, 209-210 (2001).
[CrossRef] [PubMed]

Ann. Biomed. Engr. (1)

K. A. Kang, D. F. Bruley, J. M. Londono, B. Chance, �??Localization of a fluorescent object in highly scattering media via frequency response analysis of near infrared-time resolved spectroscopy spectra,�?? Ann. Biomed. Engr. 26, 138-145 (1998).
[CrossRef]

Appl. Opt. (6)

Brit. J. Obstet. Gynaec. (1)

C. J. Aldrich, D. Dantona, J. A. D. Spencer, J. S. Wyatt, D. M. Peebles, D. T. Delpy, E. O. R. Reynolds, �??The Effect of Maternal pushing in fetal cerebral oxygenation and blood-volume during the 2nd stage of labor,�?? Brit. J. Obstet. Gynaec. 102, 448-453 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, �??Optical properties of normal and diseased breast tissues: prognosis for optical mammography,�?? J. Biomed. Opt. 1, 342-355 (1996).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. F. Dunn, �??Near-infrared imaging in the small animal brain: optimization of fiber positions,�?? J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. M. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kashke, �??Frequency-domain optical mammography: Edge effect corrections,�?? Med. Phys. 23, 146-157 (1996).
[CrossRef]

Neoplasia (2)

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, S. H. Kurtzman, �??Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,�?? Neoplasia 5, 379-389 (2003).
[PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand and J. Butler, �??Non- Invasive in vivo characterization of breast tumors using photon migration spectroscopy,�?? Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Neuroimage (1)

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, �??The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics�?? Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Optics letters (1)

Q. Zhu, T. Durduran, M. Holboke, V. Ztziachristos, A. Yodh, �??An imager that combines near infrared diffusive light and ultrasound,�?? Optics letters 24, 1050-1052 (1999).
[CrossRef]

Phys. Med. Biol. (2)

J. C. Hebden, A.Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, �??Three-dimensional optical tomography of the premature infant brain,�?? Phys. Med. Biol. 47, 4155-4166 (2002).
[CrossRef] [PubMed]

S. Behin-Ain, T. van Doorn, J. R. Patterson, �??Spatial resolution in fast time-resolved transillumination imaging: an indeterministic Monte Carlo approach,�?? Phys. Med. Biol. 47 2935-2945 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, Z. Zhuang, C. UnAh, and L. Lipton, �??Cognition-activated low-frequency modulation of light absorption in human brain,�?? Proc. Natl. Acad. Sci. USA 90, 3770-3074 (1993).
[CrossRef] [PubMed]

Proc. SPIE (2)

N. G. Chen, Q. Zhu, �??Optical Tomography with Early Arriving Photons: Sensitivity and Resolution Analysis,�?? Proc. SPIE 4250, 37-44 (2001).
[CrossRef]

Y. Chen, X. Intes, S. Zhou, C. Mu, M. Holboke, A. G. Yodh, B. Chance, �??Detection sensitivity and optimization of phased array system,�?? Proc. SPIE 4250, 211-218 (2001).
[CrossRef]

Quantum Electronics (1)

J. Beuthan, U. Netz, O. Minet, A. D. Klose, A. H. Hielscher, A. Scheel, J. Henniger, G. Muller, �??Light scattering study of rheumatoid arthritis,�?? Quantum Electronics 32, 945-952 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, �??A 32-channel time-resolved instrument for medical optical tomography,�?? Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

H. Eda, Oda I, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, �??Multichannel time-resolved optical tomographic imaging system,�?? Rev. Sci. Instrum. 70, 3595-3602 (1999).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, A. A. Alfano, �??Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,�?? Science 253, 769-771 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Time-resolved diffusive optical tomography system architecture. Thick black arrows indicate flows of broadband signals, while thin ones correspond to low frequency signals. The double-line red arrow represents modulated light propagating through a sample under investigation.

Fig. 2.
Fig. 2.

TPSF of the spread spectrum time-resolved system. The measured temporal profile (black) is slightly wider than the theoretical predication (blue).

Fig. 3.
Fig. 3.

Geometry of the experimental setup for 2-D scanning imaging. The purple rectangle (dashed-dotted) indicates the imaging area.

Fig. 4.
Fig. 4.

Targets used in imaging experiments.

Fig. 5.
Fig. 5.

TPSF of the light transmittance through the phantom in Fig. 3.

Fig. 6.
Fig. 6.

2-dimensional scanning images with a black cylinder as the target. The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 7.
Fig. 7.

2-dimensional scanning images with a spherical target (see the text for its optical properties). The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 8.
Fig. 8.

2-dimensional scanning images with clear glass bottle as the target. The time delays are (a) -0.6 ns, (b) 0 ns, and (c) 1.2 ns, respectively.

Fig. 9.
Fig. 9.

Line profiles across the center of the void target in the X direction. The solid line, circles, and asterisks correspond to -0.6 ns, 0 ns, and 1.2 ns, respectively.

Tables (1)

Tables Icon

Table 1. Spatial parameters vs. time delay

Metrics