Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A diffraction tomographic model of the forward problem using diffuse photon density waves

Open Access Open Access

Abstract

We present a model of the forward problem for diffuse photon density waves in turbid medium using a diffraction tomographic problem formulation. We consider a spatially-varying inhomogeneous structure whose absorption properties satisfy the Born approximation and whose scattering properties are identical to the homogeneous turbid media in which it is imbedded. The two-dimensional Fourier transform of the scattered field, measured in a plane, is shown to be related to the three-dimensional Fourier transform of the object evaluated on a surface which in many cases is approximately a plane.

©1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffraction tomography for biochemical imaging with diffuse-photon density waves

X. D. Li, T. Durduran, A. G. Yodh, B. Chance, and D. N. Pattanayak
Opt. Lett. 22(8) 573-575 (1997)

Analysis of forward scattering of diffuse photon-density waves in turbid media:?a diffraction tomography approach to an analytic solution

Deborah L. Lasocki, Charles L. Matson, and Peter J. Collins
Opt. Lett. 23(7) 558-560 (1998)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Figure 1
Figure 1 Plots of the two-dimensional projection of the surface on which the Fourier transform of the convolved object function is obtained with diffraction tomography. The dotted line is for real values of k, the dashed line is for Re{k2}<<Im{k2}, and the solid line is for Re{k2}>>Im{k2}. The horizontal axis is ωx and the vertical axis is ωy.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 2 ) u B ( r ) = o ( r ) u o ( r )
u B ( r ) = o ( r ) u o ( r ) g ( r r ) d r′
g ( r ) = exp [ ik r ] 4 π r
= 1 8 π 2 1 α x 2 + α y 2 k 2 exp { z α x 2 + α y 2 k 2 + ix α x + iy α y } x y
u B ( r ) = 1 8 π 2 o ( r ) u o ( r ) 1 α x 2 + α y 2 k 2 exp { z z′
× α x 2 + α y 2 k 2 + i ( x x′ ) α x + i ( y y′ ) α y } x y d r′
= 1 8 π 2 o ( r ) u o ( r ) 1 γ exp { z z′ ( γ r + i γ i )
+ i ( x x′ ) α x + i ( y y′ ) α y } x y d r′
γ γ r + i γ i
= Re { α x 2 + α y 2 k 2 } + i Im { α x 2 + α y 2 k 2 }
u B ( x , y , z o ) = 1 8 π 2 exp { ix α x + iy α y iz o γ i } γ
× o ( x′ , y′ , z′ ) u o ( x′ , y′ , z′ ) exp { z o z′ γ r }
× exp { ix′ α x iy α y iz′ ( γ i ) } dx dy dz′ x y
u B ( x , y , z o ) = 1 8 π 2 exp { ix α x + iy α y i z o γ i } γ O u γ ( α x , α y , γ i ) x y
u B ( ω x , ω y , z o ) = 1 8 π 2 exp { iz o γ i } γ O u γ ( α x , α y , γ i )
× exp { i ( x α x + y α y ) } exp { i ( x + y ) } dxdyd α x d α y
U B ( ω x , ω y , z o ) = 1 2 exp { iz o γ i } γ O u γ ( ω x , ω y , γ i )
γ i = Im { ω x 2 + ω y 2 k 2 }
k 2 = ( v μ a + i 2 π f t ) 3 μ′ s v
k 2 = 15 + i 9 f t
G ( ω x , ω y , ω z ) = 4 π 2 δ ( ω x ) δ ( ω y ) 2 γ r γ r 2 + ω z 2
O u γ ( ω x , ω y , γ i ) O u γ ( ω x , ω y , 0 )
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.