Abstract

This paper proposes a real-time human identification system using a pyroelectric infrared (PIR) detector array and hidden Markov models (HMMs). A PIR detector array with masked Fresnel lens arrays is used to generate digital sequential data that can represent a human motion feature. HMMs are trained to statistically model the motion features of individuals through an expectation-maximization (EM) learning process. Human subjects are recognized by evaluating a set of new feature data against the trained HMMs using the maximum-likelihood (ML) criterion. We have developed a prototype system to verify the proposed method. Sensor modules with different numbers of detectors and different sampling masks were tested to maximize the identification capability of the sensor system.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A pyroelectric infrared biometric system for real-time walker recognition by use of a maximum likelihood principal components estimation (MLPCE) method

Jian-Shuen Fang, Qi Hao, David J. Brady, Bob D. Guenther, and Ken Y. Hsu
Opt. Express 15(6) 3271-3284 (2007)

Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays

Jian-Shuen Fang, Qi Hao, David J. Brady, Mohan Shankar, Bob D. Guenther, Nikos P. Pitsianis, and Ken Y. Hsu
Opt. Express 14(2) 609-624 (2006)

Lightweight biometric detection system for human classification using pyroelectric infrared detectors

John Burchett, Mohan Shankar, A. Ben Hamza, Bob D. Guenther, Nikos Pitsianis, and David J. Brady
Appl. Opt. 45(13) 3031-3037 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
    [Crossref]
  2. M. Planck, “On the law of distribution of energy in the normal spectrum,” Annalen der Physik 4, 533 ff (1901).
  3. V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
    [Crossref] [PubMed]
  4. N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
    [Crossref] [PubMed]
  5. Infrared parts manual,” http://www.glolab.com/pirparts/infrared.html.
  6. U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
    [Crossref] [PubMed]
  7. “ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
    [Crossref]
  8. Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
    [Crossref]
  9. J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
    [Crossref] [PubMed]
  10. http://www.fresneltech.com/arrays.html.
  11. L.E. Baum, “An inequality and associated maximization technique in statistical estimation for probabilistic functiona of Markov processes,” Inequality 3, 1–8 (1970).
  12. L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
    [Crossref]
  13. L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE 77, 257–286 (1989).
    [Crossref]
  14. R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).
  15. R. Hughey and A. Krogh, “Hidden Markov model for sequence analysis: extension and analysis of the basic method,” Comput. Appl. Biosci. 12, 95–107 (1996).
    [PubMed]
  16. K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).
  17. W. S. Kim and R. H. Park, “Off-line recognition of handwritten Korean and alphanumeric characters using hidden Markov Models,” Pattern Recogn. 29, 845–858 (1996).
    [Crossref]
  18. J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
    [Crossref]
  19. S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).
  20. T. Jebara and A. Pentland, “Action reaction learning: automatic visual analysis and synthesis of interactive behavior,” Proceedings of 1st international conference on computer vision systems, 273–292 (1999).
  21. S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).
  22. C. Neukirchen and G. Rigoll, “Controlling the complexity of HMM systems by regularization,” Proceeding of the 1998 conference on advances in neural information processing systems II, MIT Press, 735–743(1999).
  23. M. Faundez-Zanuy and E. Monte-Moreno, “State-of-the-art in speaker recognition,” IEEE Aerosp. Electron. Syst. Mag,  20, 7–12 (2005).
    [Crossref]

2006 (2)

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

2005 (1)

M. Faundez-Zanuy and E. Monte-Moreno, “State-of-the-art in speaker recognition,” IEEE Aerosp. Electron. Syst. Mag,  20, 7–12 (2005).
[Crossref]

2004 (2)

Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
[Crossref]

K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).

2003 (1)

U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
[Crossref] [PubMed]

2002 (1)

“ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
[Crossref]

2001 (1)

N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
[Crossref] [PubMed]

1998 (1)

S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).

1996 (4)

W. S. Kim and R. H. Park, “Off-line recognition of handwritten Korean and alphanumeric characters using hidden Markov Models,” Pattern Recogn. 29, 845–858 (1996).
[Crossref]

J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
[Crossref]

R. Hughey and A. Krogh, “Hidden Markov model for sequence analysis: extension and analysis of the basic method,” Comput. Appl. Biosci. 12, 95–107 (1996).
[PubMed]

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

1989 (1)

L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE 77, 257–286 (1989).
[Crossref]

1983 (1)

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).

1970 (2)

L.E. Baum, “An inequality and associated maximization technique in statistical estimation for probabilistic functiona of Markov processes,” Inequality 3, 1–8 (1970).

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

1901 (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Annalen der Physik 4, 533 ff (1901).

Ackerman, M.

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

Baum, L.E.

L.E. Baum, “An inequality and associated maximization technique in statistical estimation for probabilistic functiona of Markov processes,” Inequality 3, 1–8 (1970).

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

Brady, D. J.

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
[Crossref] [PubMed]

Brown, M. K.

J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
[Crossref]

Burchett, J.

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

Choo, K. H.

K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).

Durbin, R.

R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).

Eddy, S.

R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).

Eickeler, S.

S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).

Fang, J. S.

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Faundez-Zanuy, M.

M. Faundez-Zanuy and E. Monte-Moreno, “State-of-the-art in speaker recognition,” IEEE Aerosp. Electron. Syst. Mag,  20, 7–12 (2005).
[Crossref]

Feller, S.

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

Gopinathan, U.

U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
[Crossref] [PubMed]

Guenther, B. D.

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Hao, Q.

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

Hsu, K. Y.

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Hu, J.

J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
[Crossref]

Hughey, R.

R. Hughey and A. Krogh, “Hidden Markov model for sequence analysis: extension and analysis of the basic method,” Comput. Appl. Biosci. 12, 95–107 (1996).
[PubMed]

Jain, Anil K.

Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
[Crossref]

Jebara, T.

T. Jebara and A. Pentland, “Action reaction learning: automatic visual analysis and synthesis of interactive behavior,” Proceedings of 1st international conference on computer vision systems, 273–292 (1999).

Kakuta, N.

N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
[Crossref] [PubMed]

Kawamura, K.

“ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
[Crossref]

Kim, W. S.

W. S. Kim and R. H. Park, “Off-line recognition of handwritten Korean and alphanumeric characters using hidden Markov Models,” Pattern Recogn. 29, 845–858 (1996).
[Crossref]

Kosmala, A.

S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).

Krogh, A.

R. Hughey and A. Krogh, “Hidden Markov model for sequence analysis: extension and analysis of the basic method,” Comput. Appl. Biosci. 12, 95–107 (1996).
[PubMed]

R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).

Levinson, S. E.

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).

Mitchison, G. J.

R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).

Monte-Moreno, E.

M. Faundez-Zanuy and E. Monte-Moreno, “State-of-the-art in speaker recognition,” IEEE Aerosp. Electron. Syst. Mag,  20, 7–12 (2005).
[Crossref]

Nakamura, M.

N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
[Crossref] [PubMed]

Neukirchen, C.

C. Neukirchen and G. Rigoll, “Controlling the complexity of HMM systems by regularization,” Proceeding of the 1998 conference on advances in neural information processing systems II, MIT Press, 735–743(1999).

Park, R. H.

W. S. Kim and R. H. Park, “Off-line recognition of handwritten Korean and alphanumeric characters using hidden Markov Models,” Pattern Recogn. 29, 845–858 (1996).
[Crossref]

Pentland, A.

T. Jebara and A. Pentland, “Action reaction learning: automatic visual analysis and synthesis of interactive behavior,” Proceedings of 1st international conference on computer vision systems, 273–292 (1999).

Petrie, T. E.

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

Pitsianis, N. P.

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
[Crossref] [PubMed]

Planck, M.

M. Planck, “On the law of distribution of energy in the normal spectrum,” Annalen der Physik 4, 533 ff (1901).

Prabhakar, Salil

Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
[Crossref]

Rabiner, L. R.

L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE 77, 257–286 (1989).
[Crossref]

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).

Rigoll, G.

S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).

C. Neukirchen and G. Rigoll, “Controlling the complexity of HMM systems by regularization,” Proceeding of the 1998 conference on advances in neural information processing systems II, MIT Press, 735–743(1999).

Ross, Arun

Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
[Crossref]

Scherzinger, A.

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

Sekmen, A. S.

“ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
[Crossref]

Shankar, M.

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

Sondhi, M. M.

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).

Soules, G.

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

Spitzer, V.

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

Tong, J. C.

K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).

Turin, W.

J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
[Crossref]

Weiss, N.

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

Whitlock, D.

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

Wilkes, M.

“ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
[Crossref]

Yokoyama, S.

N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
[Crossref] [PubMed]

Zhang, L.

K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).

Ann. Math. Stat. (1)

L.E. Baum, T. E. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat. 41, 164–171 (1970).
[Crossref]

Annalen der Physik (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Annalen der Physik 4, 533 ff (1901).

Bell Syst. Tech. J. (1)

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An instruction to the application of the theory of ,” Bell Syst. Tech. J. 62, 1035–1074 (1983).

Comput. Appl. Biosci. (1)

R. Hughey and A. Krogh, “Hidden Markov model for sequence analysis: extension and analysis of the basic method,” Comput. Appl. Biosci. 12, 95–107 (1996).
[PubMed]

Grno. Prot. Bioinfo. (1)

K. H. Choo, J. C. Tong, and L. Zhang, “Recent applications of hidden Markov models in computational biology,” Grno. Prot. Bioinfo. 2, 84–96 (2004).

IEEE Aerosp. Electron. Syst. Mag (1)

M. Faundez-Zanuy and E. Monte-Moreno, “State-of-the-art in speaker recognition,” IEEE Aerosp. Electron. Syst. Mag,  20, 7–12 (2005).
[Crossref]

IEEE Sensors Journal (1)

Q. Hao, D. J. Brady, B. D. Guenther, J. Burchett, M. Shankar, and S. Feller, “Human tracking with wireless distributed radial pyroelectric sensors,” IEEE Sensors Journal, to be published (2006).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

N. Kakuta, S. Yokoyama, and M. Nakamura, “Estimation of radiative heat transfer using a geometric human model,” IEEE Trans. Biomed. Eng. 48, 324–331 (2001).
[Crossref] [PubMed]

IEEE Trans. Circuits syst. Video technol. (1)

Anil K. Jain, Arun Ross, and Salil Prabhakar, “An introduction to biometric recognition,” IEEE Trans. Circuits syst. Video technol. 14, 4–20 (2004).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996).
[Crossref]

IEEE Trans. Syst. Sci. Cybern. A (1)

“ A. S. Sekmen, M. Wilkes, and K. Kawamura, “An application of passive human-robot interaction: human tracking based on attention distraction,” IEEE Trans. Syst. Sci. Cybern. A 32, 248–259 (2002).
[Crossref]

Inequality (1)

L.E. Baum, “An inequality and associated maximization technique in statistical estimation for probabilistic functiona of Markov processes,” Inequality 3, 1–8 (1970).

J. Am. Med. Inform. Assoc. (1)

V. Spitzer, M. Ackerman, A. Scherzinger, and D. Whitlock, “The visible human male: A technical report,” J. Am. Med. Inform. Assoc. 3, 118–130 (1996).
[Crossref] [PubMed]

Opt. Express. (2)

U. Gopinathan, D. J. Brady, and N. P. Pitsianis, “Coded apertures for efficient pyroelectric motion tracking,” Opt. Express. 11, 2142–2152 (2003).
[Crossref] [PubMed]

J. S. Fang, Q. Hao, D. J. Brady, M. Shankar, B. D. Guenther, N. P. Pitsianis, and K. Y. Hsu, “Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays,” Opt. Express. 14, 609–624 (2006).
[Crossref] [PubMed]

Pattern Recogn. (1)

W. S. Kim and R. H. Park, “Off-line recognition of handwritten Korean and alphanumeric characters using hidden Markov Models,” Pattern Recogn. 29, 845–858 (1996).
[Crossref]

Proc. IEEE (1)

L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE 77, 257–286 (1989).
[Crossref]

Other (6)

R. Durbin, S. Eddy, A. Krogh, and G. J. Mitchison, “Biological sequence analysis: Probability models of ,” Cambridge University Press, Cambridge, (1998).

S. Eickeler, A. Kosmala, and G. Rigoll, “Hidden Markov Model based continuous online gesture ,” Proceedings of international conference on pattern recognition,  2, 1206–1208 (1998).

T. Jebara and A. Pentland, “Action reaction learning: automatic visual analysis and synthesis of interactive behavior,” Proceedings of 1st international conference on computer vision systems, 273–292 (1999).

http://www.fresneltech.com/arrays.html.

Infrared parts manual,” http://www.glolab.com/pirparts/infrared.html.

C. Neukirchen and G. Rigoll, “Controlling the complexity of HMM systems by regularization,” Proceeding of the 1998 conference on advances in neural information processing systems II, MIT Press, 735–743(1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

A sensor module (Model 4M) and its visibilities that associate detection regions and the four sensors.

Fig. 2.
Fig. 2.

The diagram of the identification process.

Fig. 3.
Fig. 3.

The experiment setup.

Fig. 4.
Fig. 4.

Event signal generation. (a) The response signals of a PIR detector. (b) Filtered signals. (c) Digitized signals. (d) Binary signals. (e) Event signals.

Fig. 5.
Fig. 5.

Two 4-bit digital features (event index sequences) generated by two subjects walking along the same path.

Fig. 6.
Fig. 6.

The corresponding decimal sequential signals of Fig. 5.

Fig. 7.
Fig. 7.

The flow-chart diagram of digital feature extraction.

Fig. 8.
Fig. 8.

Log-likelihoods of (a) five walkers’ testing data against one walker’s HMM; (b) one walker’s testing data against five walkers’ HMMs.

Fig. 9.
Fig. 9.

Two sensor modules and their visibility matrices that define the detection regions of the four sensors. (a) Model 4L; (b) Model 4H.

Fig. 10.
Fig. 10.

Average path-dependent identification rates as a function of the number of persons for the three types of sensor modules.

Fig. 11.
Fig. 11.

Three sensor modules with 8 sensor units and their visibility matrices that define the detection regions of the eight sensors. (a) Model 8L; (b) Model 8M; (c) Model 8H.

Fig. 12.
Fig. 12.

Average path-dependent identification rates as a function of the number of persons for the three types of sensor modules.

Fig. 13.
Fig. 13.

Average identification rates for a group of 10 as a function of the (a) training sequences in different length; (b) testing sequences in different length.

Fig. 14.
Fig. 14.

Average path-independent identification rates as a function of the number of persons.

Tables (1)

Tables Icon

Table 1. Closed-set path-independent identification results for 10 walkers.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

{ a ij 0 j = 1 N a ij = 1 .
{ b j ( v k ) 0 k = 1 M b j ( v k ) = 1 .
{ π i 0 i = 1 N π i = 1 .
α 1 ( i ) = π i b i ( o 1 ) , 1 i N .
α t + 1 ( j ) = [ i = 1 N α t ( i ) a ij ] b j ( o t + 1 ) , 1 t T 1, 1 j N .
β T ( i ) = 1 , 1 i N .
β t ( i ) = j = 1 N a ij b j ( o t + 1 ) β t + 1 ( j ) , 1 t T 1, 1 i N .
P ( O λ ) = i = 1 N α t ( i ) β t ( i ) , t .
ζ t ( i , j ) = P ( s t = i , s t + 1 = j | O , λ )
= α t ( i ) a ij b j ( o t + 1 ) β t + 1 ( j ) P ( O | λ ) .
γ t ( i ) = j = 1 N ζ t ( i , j ) .
a ¯ ij = t = 1 T 1 ζ t ( i , j ) t = 1 T 1 γ t ( i ) , 1 i N , 1 j N ,
b ¯ j ( k ) = t = 1 , o t = v k T γ t ( j ) t = 1 T γ t ( j ) , 1 i N , 1 k M ,
π ¯ i = γ 1 ( i ) , 1 i N .
X λ i , i = arg max i { p ( X λ i ) } , 1 i K ,

Metrics