Abstract

A two- and three-dimensional swept source optical coherence tomography (SS-OCT) system, which uses a ready-to-ship scanning light source, is demonstrated. The light source has a center wavelength of 1.31 μm, -3 dB wavelength range of 110 nm, scanning rate of 20 KHz, and high linearity in frequency scanning. This paper presents a simple calibration method using a fringe analysis technique for spectral rescaling. This SS-OCT system is capable of realtime display of two-dimensional OCT and can obtain three-dimensional OCT with a measurement time of 2 s. In vivo human anterior eye segments are investigated two- and three-dimensionally. The system sensitivity is experimentally determined to be 112 dB. The three-dimensional OCT volumes reveal the structures of the anterior eye segments, which are difficult to observe in two-dimensional OCT images. A two dimensional tomographic movie shows a dynamic motion of a human iris.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectralinterferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. Gerd Häusler and Michael Walter Lindner, " "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
  3. D. Huang and E. A. Swanson and C. P. Lin, J. S. Schuman, W. G. Stinson and W. Chang and M. R. Hee, T. Flotte and K. Gregory and C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  4. W. Drexler and U. Morgner and F. X. Kartner and C. Pitris and S. A. Boppart and X. D. Li and E. P. Ippen and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  5. B. Povazay and K. Bizheva and A. Unterhuber and B. Hermann and H. Sattmann and A. F. Fercher and W. Drexler and A. Apolonski and W. J. Wadsworth and J. C. Knight and P. St. J. Russell and M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  6. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>.
    [CrossRef] [PubMed]
  7. Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk and Jay S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
    [CrossRef] [PubMed]
  8. Barry Cense, Nader A. Nassif, Teresa C. Chen, Mark C. Pierce, Seok-Hyun Yun, B. Hyle Park, Brett E. Bouma, Guillermo J. Tearney and Johannes F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express , 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
    [CrossRef] [PubMed]
  9. Maciej Wojtkowski, Tomasz Bajraszewski, Piotr Targowski and Andrzej Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
    [CrossRef] [PubMed]
  11. Takahisa Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
    [CrossRef]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher," Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  13. Johannes F. de Boer, Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney and Brett E. Bouma," "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  14. Michael A. Choma, Marinko V. Sarunic, Changhuei Yang and Joseph A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  15. S. R. Chinn, E. A. Swanson and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  16. S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  17. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>.
    [CrossRef] [PubMed]
  18. R. Huber, M.Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13 3513-3528 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513</a>.
    [CrossRef] [PubMed]
  19. S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>.
    [CrossRef] [PubMed]
  20. S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4822">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4822</a>.
    [CrossRef] [PubMed]
  21. Jun Zhang, Woonggyu Jung, J. Stuart Nelson and Zhongping Chen, Full range polarization-sensitive Fourier domain optical coherence tomography, Opt. Express 12, 6033-6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>.
    [CrossRef] [PubMed]
  22. Jun Zhang, J. Stuart Nelson and Zhongping Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149(2005).
    [CrossRef] [PubMed]
  23. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  24. Rainer A. Leitgeb, Christoph K. Hitzenberger, Adolf F. Fercher, and Tomasz Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
    [CrossRef] [PubMed]
  25. Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Hiroshi Sumimura, Masahide Itoh, and Toyohiko Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6184">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6184</a>.
    [CrossRef] [PubMed]
  26. Erich Götzinger, Michael Pircher, Rainer A. Leitgeb, and Christoph K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-583">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-583</a>.
    [CrossRef] [PubMed]
  27. Marinko V. Sarunic, Michael A. Choma, Changhuei Yang, and Joseph A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957</a>.
    [CrossRef] [PubMed]
  28. Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Masahide Itoh, and Toyohiko Yatagai, "Simultaneous B-M-mode scanning method for realtime full-range Fourier domain opticall coherence tomography," Appl. Opt. (accepted to publication).
    [PubMed]
  29. Mitsuo Takeda, Hideki Ina and Seiji Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]
  30. Christophe Dorrer, Nadia Belabas, Jean-Pierre Likforman, and Manuel Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  31. Maciej Wojtkowski, Rainer Leitgeb, Andrzej Kowalczyk, Tomasz Bajraszewski, and Adolf F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  32. Jun Zhang and Zhongping Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449</a>.
    [CrossRef] [PubMed]
  33. Michael A. Choma, Kevin Hsu, and Joseph A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
    [CrossRef]
  34. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5483">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5483</a>.
    [CrossRef] [PubMed]
  35. Anjul M. Davis, Michael A. Choma, and Joseph A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
    [CrossRef]
  36. American National Standards institute, "American National Standard for the Safe Use of Lasers ANSI Z136.1-2000," American National Standards institute, New York (2000).

American National Standards institute

American National Standards institute, "American National Standard for the Safe Use of Lasers ANSI Z136.1-2000," American National Standards institute, New York (2000).

Appl. Opt.

Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Masahide Itoh, and Toyohiko Yatagai, "Simultaneous B-M-mode scanning method for realtime full-range Fourier domain opticall coherence tomography," Appl. Opt. (accepted to publication).
[PubMed]

J. Biomed. Opt.

Maciej Wojtkowski, Rainer Leitgeb, Andrzej Kowalczyk, Tomasz Bajraszewski, and Adolf F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Michael A. Choma, Kevin Hsu, and Joseph A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

Anjul M. Davis, Michael A. Choma, and Joseph A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

Gerd Häusler and Michael Walter Lindner, " "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Takahisa Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
[CrossRef]

Opt. Commun.

A. F. Fercher and C. K. Hitzenberger and G. Kamp and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectralinterferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>.
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
[CrossRef] [PubMed]

Michael A. Choma, Marinko V. Sarunic, Changhuei Yang and Joseph A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>.
[CrossRef] [PubMed]

Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk and Jay S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
[CrossRef] [PubMed]

Barry Cense, Nader A. Nassif, Teresa C. Chen, Mark C. Pierce, Seok-Hyun Yun, B. Hyle Park, Brett E. Bouma, Guillermo J. Tearney and Johannes F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express , 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>.
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>.
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4822">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4822</a>.
[CrossRef] [PubMed]

Jun Zhang, Woonggyu Jung, J. Stuart Nelson and Zhongping Chen, Full range polarization-sensitive Fourier domain optical coherence tomography, Opt. Express 12, 6033-6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>.
[CrossRef] [PubMed]

Yoshiaki Yasuno, Shuichi Makita, Takashi Endo, Gouki Aoki, Hiroshi Sumimura, Masahide Itoh, and Toyohiko Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6184">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6184</a>.
[CrossRef] [PubMed]

Erich Götzinger, Michael Pircher, Rainer A. Leitgeb, and Christoph K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-583">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-583</a>.
[CrossRef] [PubMed]

Marinko V. Sarunic, Michael A. Choma, Changhuei Yang, and Joseph A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-957</a>.
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5483">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5483</a>.
[CrossRef] [PubMed]

Jun Zhang and Zhongping Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7457 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449</a>.
[CrossRef] [PubMed]

R. Huber, M.Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13 3513-3528 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-9-3513</a>.
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher," Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
[CrossRef] [PubMed]

Opt. Lett.

Maciej Wojtkowski, Tomasz Bajraszewski, Piotr Targowski and Andrzej Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003).
[CrossRef] [PubMed]

Johannes F. de Boer, Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney and Brett E. Bouma," "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Rainer A. Leitgeb, Christoph K. Hitzenberger, Adolf F. Fercher, and Tomasz Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

B. Povazay and K. Bizheva and A. Unterhuber and B. Hermann and H. Sattmann and A. F. Fercher and W. Drexler and A. Apolonski and W. J. Wadsworth and J. C. Knight and P. St. J. Russell and M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

Jun Zhang, J. Stuart Nelson and Zhongping Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149(2005).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

W. Drexler and U. Morgner and F. X. Kartner and C. Pitris and S. A. Boppart and X. D. Li and E. P. Ippen and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Science

D. Huang and E. A. Swanson and C. P. Lin, J. S. Schuman, W. G. Stinson and W. Chang and M. R. Hee, T. Flotte and K. Gregory and C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (6)

» Media 1: AVI (1822 KB)     
» Media 2: AVI (1948 KB)     
» Media 3: AVI (1611 KB)     
» Media 4: AVI (2229 KB)     
» Media 5: AVI (1974 KB)     
» Media 6: AVI (5313 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The optical scheme of SS-OCT. HSL: high-speed wavelength scanning light source, C: circulator, RM: reference mirror, OL: objective, and BR: balanced photo receiver.

Fig. 2.
Fig. 2.

The instantaneous output power (red curve) and wavelength (blue curve) of the light source. Since the light output duty cycle is 50%, the light emits for 25 μs, then is suppressed for 25 μs.

Fig. 3.
Fig. 3.

Point spread functions obtained at several different depth positions. Blue and red curves represent point spread functions with and without rescaling respectively.

Fig. 4.
Fig. 4.

A representative of point spread functions at the depth of 1 mm.

Fig. 5.
Fig. 5.

The depth dependence of longitudinal resolution.

Fig. 6.
Fig. 6.

Two-dimensional tomographies of human anterior eye segments in vivo. SL: sclera, IS: iris stroma, IPE: iris pigment epithelium, CL: crystalline lens, SS: scleral spur, TM: trabecular meshwork, SC: Schlemm’s canal, CB: ciliary body, CE: corneal epithelium, CS: corneal stroma, and ICA: iridocorneal angle opening. The shadowing lines on the right side of image (a) are because of eyelashes.

Fig. 7.
Fig. 7.

Three-dimensional tomographies of the human anterior eye segments in vivo. (a) sclera and iris (1.8MB), (b) Palpebras and cornea (1.9MB), (c) iridocorneal angle opening (1.6MB), and (d) Iris, crystalline lens, and zonules of Zinn (2.2MB). IR: iris, NL: nucleus lentis, and ZZ: zonules of Zinn.

Fig. 8.
Fig. 8.

B-scan images of human anterior eye chamber in dark room (upper) and bright room (lower). A tomographic movie shows contructing motion of the iris (1.9MB version and 5.2MB version).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ z = N λ c 2 / 4 δ λ
i m ( t ) = 2 η Γ ( z 0 ) P r ( t ) P p ( t ) cos { 4 π c z 0 ν ( t ) }
𝔉 [ i m ( t ) ] = η Γ ( z 0 ) 𝔉 [ P r ( t ) P p ( t ) ]
* { 𝔉 [ exp ( i 4 π c z 0 ν Ω ( t ) ) ] * δ ( μ 2 c z 0 ν 1 )
+ 𝔉 [ exp ( i 4 π c z 0 ν Ω ( t ) ) ] * δ ( μ + 2 c z 0 ν 1 ) }
i m ( t ) = η Γ ( z 0 ) P r ( t ) P p ( t ) exp { i 4 π z 0 ν ( t ) / c } .
ν ( t j ) = c 4 π z 0 ϕ m ( t j ) .
t ( ν ) a 0 + a 1 ν + a 2 ν 2 + a 3 ν 3 .

Metrics